欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 233-241.doi: 10.3724/SP.J.1006.2010.00233

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆[Glycine max(L.)]成熟期近等基因系导入片段分析

魏金鹏1,**,鄂文弟1,2,**,刘章雄1,关荣霞1,常汝镇1,邱丽娟1,*   

  1. 1 中国农业科学院作物科学研究所 / 国家农作物基因资源与遗传改良重大科学工程 / 农业部作物种质资源利用重点开放实验室, 北京100081; 2 全国农业技术服务推广中心, 北京 100026
  • 收稿日期:2009-05-26 修回日期:2009-10-02 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 邱丽娟,E-mail:qiu_lijuan@263.net;Tel:010-82105843
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)(2006AA100104,2006AA10A11D,2006AA10Z1F1,2006AA10Z1B3)和国家科技支撑项目(2006BAD13B05)资助。

Analysis of Introgressed Segments in Near-Isogenic Lines Carrying Soybean Maturity Genes

WEI Jin-Peng1,**,E Wen-Di2,**,LIU Zhang-Xiong1,GUAN Rong-Xia1,CHANG Ru-Zhen1,QIU Li-Juan1*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 China Agricultural Technology Extension Service Center, Beijing 100026, China
  • Received:2009-05-26 Revised:2009-10-02 Published:2010-02-10 Published online:2009-12-21
  • Contact: QIU Li-Juan,E-mail: qiu_lijuan@263.net;Tel:010-82105843

摘要:

选择243个多态性SSR标记, 分析轮回亲本Harosoy23个携带大豆4个不同成熟期基因的近等基因系(near isogenic line, NIL), 共检测出导入片段266, 平均每个NIL有导入片段11.6个。其中由携带E1基因NIL检测出导入片段150, 主要集中在第6号染色体;由携带E2e3E5基因NIL各检测出导入片段55个、49个和73, 分别集中在第20号、第12号和第20号染色体, 根据NILSSR分析结果聚类,具有相同熟期基因的NILs趋向聚在一起。通过对导入片段进行分析, 推测E1基因与第6号染色体的satt643~sat_312区间及第11号染色体的sat_095位点相关, E2E5基因与第20号染色体的satt587~satt496区间相关, e3与第12号染色体的satt317~satt181区间相关。结果表明, 利用近等基因系不仅验证了已知E1基因所在的染色体区间, 发现了一个新的标记位点与E1相关, 还鉴定出与E2e3E5基因相关的标记, 明确了轮回亲本中成熟期基因所在导入片段大小及其位置, 为成熟期基因的精细定位和克隆提供了信息。

关键词: 大豆, 近等基因系, 导入片段, 成熟期

Abstract:

It is very important to exploit the soybean maturity genes for developing varieties with high-yield and wide adaptability in both theory and practice. The objective of the study was to identify the size and position of introgressed segments associating with maturity genes, which provides information of fine mapping and cloning maturity genes. Twenty-three introgression lines (near isogenic lines, NILs) carrying four soybean maturity genes and their recurrent parent, were analyzed with 243 SSR markers, and 266 introgression segments were found, so each NIL containing 11.6 introgressed segments on average. The majority of 150 introgressed segments with E1, were located on chromosome 6, while 55, 49; 73 introgressed segments with E2, e3, E5on chromosomes 20, 12 and 20 respectively. The NILs with the same maturity gene trended to cluster together. The results showed that E1 was related to the interval of satt643–sat_312 on chromosome 6 and sat_095 on chromosome 11; both E2 and E5 loci associated with the interval of satt587–satt496 on chromosome 20; e3 was related to the interval of satt317–satt181 on chromosome 12. Therefore, E1 locus was validated with NILs, anda new markerrelated to E1 was detected, and E2, e3, E5 gene-related markers were identified.

Key words: Soybenan, Near-isogenic lines, Introgressed segments, Maturity


[1] McBlain B, Bernard R L. A new gene affecting the time of flowering and maturity in soybean. J Hered, 1987, 78: 160-162

[2] Bernard R L.Two genes for time of flowering and maturity in soybeans. Crop Sci, 1971, 11: 242-244

[3] Buzzell R I. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol, 1971, 13: 703-707

[4] Buzzell R I, Voldeng H D. Inheritance of insensitivity to long daylength. Soybean Genet News, 1980, 7: 26-29

[5] Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229-232

[6] Cober E R, Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698-701

[7] Ray J D, Hinson K, Mankono J E B, Malo M F. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35, 1001-1006

[8] Chang R-Z(常汝镇). A genetic analysis on effect of maturity genes in soybeans. Soybean Sci (大豆科学), 1992, 11(2): 127-133 (in Chinese with English abstract)

[9] Chang R-Z(常汝镇), Li X-H(李星华). Study on effect of maturity genes in soybeans under summer sowing condition. Chin J Oil Crop Sci (中国油料), 1993, 15(3): 15-17 (in Chinese with English abstract)

[10] Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics, 2008, 180: 995-1007

[11] Wang Y(王英), Han T-F(韩天富). Study on the heredity and QTL mapping of growth period traits in soybean. J Anhui Agric Sci (安徽农业科学), 2008, 36(4): 1391-1393 (in Chinese with English abstract)

[12] Zhao Y-F(赵永锋), Chen J-T(陈景堂), Zhu L-Y(祝丽英), Jia X-Y(贾晓艳), Huang Y-Q(黄亚群), Liu Z-Z(刘志增). Status of research on application and establishment of SSILs in maize. J Maize Sci (玉米科学), 2006, 14(3): 17-19 (in Chinese with English abstract)

[13] Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes , in an interspecies cross of tomato. Genetics, 1990, 124: 735-742

[14] Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd1, Hd2, and Hd3, controlling heading date of rice, as single mendelian factors. Theor Appl Genet, 1998, 97: 37-44

[15] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene, CONSTANS. Plant Cell, 2000, 12: 2473-2483

[16] Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield- associated QTL. Genetics, 1995, 141: 1147-1162

[17] Xu H-S(徐华山), Sun Y-J(孙永建), Zhou H-J(周红菊), Yu S-B(余四斌). Development and characterization of contiguous segment substitution lines with background of an elite restorer Line. Acta Agron Sin (作物学报), 2007, 33(6): 979-986 (in Chinese with English abstract)

[18] Meksem K, Pantazopoulos P, Njiti V N, Hyten L D, Arelli P R, Lightfoot D A. ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet, 2001, 103:710-717

[19] Maughan P J, Sagllai-Maroof M A, Buss G R, Huestis G M. Amplified fragment length polymorphism (AFLP) in soybean: Species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet, 1996, 93: 392-401

[20] Meksem K, Doubler T W, Chancharoenchai K, Nijti N, Chang S J, Rao Arelli A P, Cregan P E, Gray L E, Gibson P T, Lightfoot D A. Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines. Theor Appl Genet, 1999, 99: 1131-1142

[21] Chowdhury A K, Srinives P, Saksoong P, Tongpamnak P. RAPD markers linked to resistance to downy mildew disease in soybean. Euphytica, 128: 55-60, 2002

[22] Cairo C A, Stein J, Delgado L, Bortolotti S, Guelman S A, Ortiz J P A, Morandi E N. Tagging the juvenile locus in soybean (Glycine max L. Merr.) with molecular markers. Euphytica, 2002, 124: 387-395

[23] Li Y-X(李永祥), Liu C(刘成), Shi Y-S(石云素), Shen H-B(申海兵), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). Development and evaluation of maize introgression lines with drought tolerance in flowering-time. J Plant Genet Resour (植物遗传资源学报), 2008, 9(3): 293-296 (in Chinese with English abstract)

[24] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490

[25] Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 201-204 (in Chinese with English abstract)

[26] Keim P, Diemb W, Olson T C, Shoemaker R C. RFLP mapping in soybean association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742

[27] Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72

[28] Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived froma recombinant inbred line. Theor Appl Genet, 2005, 110: 634-639

[29] Molnar S J, Rai S, Charette M, Cober E. Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome, 2003, 46: 1024-1036

[30] Mamsur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36:1327-1336

[31] Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive morphological and seed traits of soybean ( Glycine max L. Merr.). Theor Appl Genet, 1993, 86: 907-913

[32] Orf J H, Chase K, Jarvik T, Cregan P B, Adler F R. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651

[33] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131-1139

[34] Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25-35

[35] Ning H-X(宁慧霞), Li Y-H(李英慧), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Guan R-X(关荣霞), Luo Y-P(罗淑萍), Qiu L-J(邱丽娟). Deducing maturity genotype of the Chinese soybean varieties. Acta Agron Sin 作物学报), 2008, 34(3): 382-388 (in Chinese with English abstract)(

[36] Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang Z-M(张泽民), Zhang G-Q(张桂权). Analysis of introgressed segments in near-isogenic lines for F1 pollen sterility in rice. Chin J Rice Sci (中国水稻科学), 2003, 17(2): 95-99 (in Chinese with English abstract)

[37] Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet. 2003, 108: 458-467

[38] Cober E R. Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698-701

[39] Cober E R, Voldeng H D. Low R: FR light quality delays flowering of E7E7 soybean lines. Crop Sci, 2001, 41: 1823-1826

[40] Hisakazu M, Liu B H, Jun A, Takahashi R. AFLP mapping of soybean maturity gene E4. J Hered, 2008: 1-5

[41] Abe J, Xu D H, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci, 2003, 43: 1300-1304
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!