欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 833-839.doi: 10.3724/SP.J.1006.2010.00833

• 耕作栽培·生理生化 • 上一篇    下一篇

胞内钙库对小麦叶锈菌侵染之过敏反应的影响

张蓓,阎爱华,刘刚,刘猛,侯春燕,王冬梅*   

  1. 河北农业大学生命科学学院,河北保定071001
  • 收稿日期:2009-11-09 修回日期:2010-02-07 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 王冬梅, E-mail: dongmeiwang63@hotmail.com
  • 基金资助:

    本研究由国家自然科学基金(30671244),河北省应用基础研究计划重点基础研究项目(08965505D),河北省自然科学基金(303180,C2005000220,C2007000515)资助.

Effect of Intracellular Calcium Stores on Hypersensitive Reaction Induced by Wheat Leaf Rust Fungus

ZHANG Bei,YAN Ai-Hua,LIU Gang,LIU Meng,HOU Chun-Yan,WANG Dong-Mei*   

  1. College of Life Science,Agricultural University of Hebei,Baoding 071001,China
  • Received:2009-11-09 Revised:2010-02-07 Published:2010-05-12 Published online:2010-03-15
  • Contact: WANG Dong-Mei,E-mail:dongmeiwang63@hotmail.com

摘要:

使用影响胞内Ca2+库和钙通道的药物预注射小麦叶片,观察其对小麦受叶锈菌侵染诱发的过敏反应(HR)的影响。结果表明,对小麦叶片预注射不同浓度的胞内Ca2+螯合剂(BAPTA-AM)后接种叶锈菌小种260,随着注射药物浓度的增高,寄主细胞发生HR的面积逐渐减小。而注射胞内Ca2+激活剂(caffiene)后接种,HR的面积有所增加。进一步用胞内Ca2+通道抑制剂(herapinRR8-Br-cADPR)预处理,结果herapinHR的影响呈浓度依赖型,而RR8-Br-cADPRHR没有明显作用。据此提出,胞内Ca2+可能参与小麦抵抗叶锈菌侵染过程中钙信号的形成,且这一过程主要通过IP3途径完成。

关键词: 小麦, 叶锈菌, Ca2+, 过敏性反应

Abstract:

With injecting drugs to affect intracellular calcium stores and calcium channel in Wheat (Triticum aestivum) leaves, we investigated hypersensitive reaction (HR) changes in wheat leaves invaded by leaf rust (Puccinia triticina). The results showed that the intracellular calcium chelators (BAPTA-AM) could obviously reduce the area of dying cells caused by HR. The higher the concentration was, the smaller the area of dying cell was. While intracellular calcium activator (caffeine) was injected into wheat leaves, HR could also be detected. The HR area increased with caffeine concentration. Calcium channel blockers (heparin, RR, and 8-Br-cADPR) were separately injected into wheat leaves before inoculation. The results showed that there was a concentration-depended effect on HR with herapin, and no obviously effect with RR and 8-Br-cADPR. Therefore, we deduced that intracellular calcium might involve in the formation of calcium signal transduction through IP3 pathway during infection of wheat leaf rust fungus.

Key words: Wheat(Triticum aestivum L.), Puccinia triticina, Calcium, Hypersensitive response



[1] Xu H, Heath M C. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell, 1998, 10: 585–597





[2] Guan C-L(关春蕾), Hou C-Y(侯春燕), Wang D-M(王冬梅). The role of drugs affecting calcium metabolism and calcium channel on HR induced by wheat leaf rust fungus. J Agric Univ Hebei (河北农业大学学报), 2006, 29(6): 4–8 (in Chinese with English abstract)





[3] Bush D S. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Miol Biol, 1995, 46: 95–122





[4] Sanders D, Brownlee C, Harper J F. Communicating with calcium. Plant Cell, 1999, 11: 691–706





[5] Alexandre J, Lassalles J P, Kado R T. Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature, 1990, 343: 567–570





[6] Allen G J, Mair S R, Sandens D. Release of Ca2+from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science, 1995, 268: 735–737





[7] Ward J M, Schroeder J I. Calcium-activated K+-channels and calcium induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell, 1994, 6: 669–683





[8] Deng E-X(邓恩新), Wang W-Z(王文忠), Wang Z-X(王智炘). A simple equipment for injecting solution to plant leaves. Plant Physiol Commun (植物生理学通讯), 1992, 28(4): 296 (in Chinese)





[9] Rohringer K, Kim W K. An optical brighter for fluorescence microscopy of fungal plant parasites in leaves. Phytopathology, 1977, 67: 808–810





[10] Renelt A, Colling C, Hahlbrock K, Nürnberger T, Parker J E, Sacks W, Scheel D. Studies on elicitor recognition and signal transduction in plant defence. J Exp Bot, 1993, 44 (suppl): 257–268





[11] Mithöfer A, Ebel J, Bhagwat A A, Boller T, Neuhaus-Url G. Transgenic aequorin monitors cytosolic transients in soybean cells challenged with β-glucan or chitin elicitors. Planta, 1999, 207: 566–574





[12] Durner J, Wendehenne D, Klessig D F. Defence gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA, 1998, 95: 10328–10333





[13] Klessig D F, Durner J, Noad R, Navarre D A, Wendehenne D, Kumar D, Zhou J M, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signalling in plant defences. Proc Natl Acad Sci USA, 2000, 97: 8849–8855





[14] Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D. Analysis of nitric oxide signalling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol, 2004, 135: 516–529





[15] Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A. Integrated signalling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defences. Mol Plant Microbe Interactions, 2006, 19: 429–440





[16] Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell, 2002, 14: 2627–2641

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!