作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1786-1790.doi: 10.3724/SP.J.1006.2010.01786
吴欣1,2,崔子田1,胡彦民1,刘宗华1,李绍伟2,王建文2,汤继华1,*
WU Xin1, 2,CUI Zi-Tian1,HU Yan-Min1,LIU Zong-Hua1,LI Shao-Wei2,WANG Jian-Wen2,TANG Ji-Hua1,*
摘要: 花丝活力长短在一定程度上影响着玉米制种产量和杂交种产量,对玉米生产具有重要意义。为阐明玉米花丝活力的遗传机理,本研究利用来自优良玉米杂交种农大108的一套203个重组近交系群体,通过一年3点的田间试验对玉米花丝活力进行了遗传分析,结果发现同一基因型的花丝活力在不同环境中存在较大的差异。利用复合区间作图法定位了8个不同位点的QTL,分布在玉米第3、第5、第6、第7和第8染色体上,单个QTL可解释花丝活力表型变异的11.06%~20.82%,该研究为玉米花丝活力的选择提供了一定的理论依据。
[1]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278 [2]Li J-C(李金才), Cui Y-H(崔彦宏), Dong H-R(董海荣), Wang Y-Z(王艳哲), Zhang L-H(张丽华). The advances on the growth and development and the fertilization capability of maize (Zea mays L.) silk. J Hebei Agric Univ (河北农业大学学报), 2002, 25(1): 86-89 [3]Zhang W-Q(张维强), Shen X-Y(沈秀瑛), Dai J-Y(戴俊英). The effects of drought to pollen, silk vigor and kernel formation. J Maize Sci (玉米科学), 1993, 1(2): 45-48 (in Chinese) [4]Peterson D P. Duration of receptiveness in corn silks. Agron J, 1949, 34: 369-371 [5]Cárcova J, Otegui M E. Ear temperature and pollination timing effects on maize kernel set. Crop Sci, 2001, 41: 1809-1815 [6]Hall A J, Vilella F, Trapani N, Chimenti C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res, 1982, 5: 349-363 [7]Otegui M E, Andrade F H, Suero E E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87-94 [8]Otegui M E. Kernel set and flower synchrony within the ear of maize: II. Plant population effects. Crop Sci, 1997, 37: 448-455 [9]Schoper J B, Lambert R J, Vasilas B L. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci, 1987, 27: 27-31 [10]Schoper J B, Lambert R J, Vasilas B L. Maize pollen viability and ear receptivity under water and high temperature stress. Crop Sci, 1986, 26: 1029-1033 [11]Anderson S R, Lauer M J, Schoper J B, Shibles R M. Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Sci, 2004, 44: 464-473 [12]Bassetti P, Westgate M E. Emergence, elongation, and senescence of maize silks. Crop Sci, 1993, 33: 271-275 [13]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278 [14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Etoh T. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181 [15]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004 [16]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468 [17]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 12: 185-199 [18]Cárcova J, Uribelarrea M, Borrás L, Otegui M E, Westgate M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Sci, 2000, 40: 1056-1061 [19]Uribelarrea M, Cárcova J, Otegui M E, Westgate M E. Pollen production, pollination dynamics, and kernel set in maize. Crop Sci, 2002, 42: 1910-1918 [20]Struik P C, Doorgeest M, Boonman J G. Environmental effects on flowering characteristics and kernel set of maize (Zea may L.). Neth J Agric Sci, 1986, 34: 469-484 [21]Cárcova J, Andrieu B, Otegui M E. Silk elongation in maize: relationship with flower development and pollination. Crop Sci, 2003, 43: 914-920 [22]Berke T, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542-1549 [23]Khairallah M, Bohn M, Jiang C Z, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Z Pflanzenzuecht, 1998, 117: 309-318 [24]Hu Y-M(胡彦民), Wu X(吴欣), Li C-X(李翠香), Fu Z-Y(付志远), Liu Z-H(刘宗华), Tang J-H(汤继华). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J Nanjing Agric Univ (南京农业大学学报), 2008, 31(1): 11-16 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[4] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[5] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[6] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[7] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[8] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[9] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[10] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[11] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[12] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[13] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[14] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[15] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
|