欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1786-1790.doi: 10.3724/SP.J.1006.2010.01786

• 研究简报 • 上一篇    下一篇

玉米花丝活力的遗传分析

吴欣1,2,崔子田1,胡彦民1,刘宗华1,李绍伟2,王建文2,汤继华1,*   

  1. 1河南农业大学农学院,河南郑州450002;2开封市农林科学研究院,河南开封475004
  • 收稿日期:2010-01-02 修回日期:2010-05-23 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 基金资助:
    本研究由高技术研究发展计划(863计划)项目(2009AA10AA03)和国家自然科学基金项目(30871538)资助。

Genetic Analyses of Silk Vigor in Maize

WU Xin1, 2,CUI Zi-Tian1,HU Yan-Min1,LIU Zong-Hua1,LI Shao-Wei2,WANG Jian-Wen2,TANG Ji-Hua1,*   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; 2 Institute of Food Crops, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng 475004, China
  • Received:2010-01-02 Revised:2010-05-23 Published:2010-10-12 Published online:2010-08-04

摘要: 花丝活力长短在一定程度上影响着玉米制种产量和杂交种产量,对玉米生产具有重要意义。为阐明玉米花丝活力的遗传机理,本研究利用来自优良玉米杂交种农大108的一套203个重组近交系群体,通过一年3点的田间试验对玉米花丝活力进行了遗传分析,结果发现同一基因型的花丝活力在不同环境中存在较大的差异。利用复合区间作图法定位了8个不同位点的QTL,分布在玉米第3、第5、第6、第7和第8染色体上,单个QTL可解释花丝活力表型变异的11.06%~20.82%,该研究为玉米花丝活力的选择提供了一定的理论依据。

关键词: 玉米, 花丝活力, QTL, 分析

Abstract: Silk vigor is an important trait that effects hybrid seed production and hybrid production in maize. For dissecting the genetic basis of silk vigor, a set of 203 recombinant inbred lines (RIL) population, which derived from the elite hybrid Nongda 108 (Huang C × Xu 178), were evaluated at three environments. The results showed that silk vigor of genotype had significant distinct at different environments. Eight different QTL were detected for silk vigor using composite interval mapping method, and located on chromosomes 3, 5, 6, 7, and 8, with 11.06%–20.82% phenotypic contribution of silk vigor, this study can aid to seed vigor selection in maize breeding.

Key words: Maize, silk vigor, QTL, analysis

[1]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278
[2]Li J-C(李金才), Cui Y-H(崔彦宏), Dong H-R(董海荣), Wang Y-Z(王艳哲), Zhang L-H(张丽华). The advances on the growth and development and the fertilization capability of maize (Zea mays L.) silk. J Hebei Agric Univ (河北农业大学学报), 2002, 25(1): 86-89
[3]Zhang W-Q(张维强), Shen X-Y(沈秀瑛), Dai J-Y(戴俊英). The effects of drought to pollen, silk vigor and kernel formation. J Maize Sci (玉米科学), 1993, 1(2): 45-48 (in Chinese)
[4]Peterson D P. Duration of receptiveness in corn silks. Agron J, 1949, 34: 369-371
[5]Cárcova J, Otegui M E. Ear temperature and pollination timing effects on maize kernel set. Crop Sci, 2001, 41: 1809-1815
[6]Hall A J, Vilella F, Trapani N, Chimenti C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res, 1982, 5: 349-363
[7]Otegui M E, Andrade F H, Suero E E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87-94
[8]Otegui M E. Kernel set and flower synchrony within the ear of maize: II. Plant population effects. Crop Sci, 1997, 37: 448-455
[9]Schoper J B, Lambert R J, Vasilas B L. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci, 1987, 27: 27-31
[10]Schoper J B, Lambert R J, Vasilas B L. Maize pollen viability and ear receptivity under water and high temperature stress. Crop Sci, 1986, 26: 1029-1033
[11]Anderson S R, Lauer M J, Schoper J B, Shibles R M. Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Sci, 2004, 44: 464-473
[12]Bassetti P, Westgate M E. Emergence, elongation, and senescence of maize silks. Crop Sci, 1993, 33: 271-275
[13]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278
[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Etoh T. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[15]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004
[16]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
[17]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 12: 185-199
[18]Cárcova J, Uribelarrea M, Borrás L, Otegui M E, Westgate M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Sci, 2000, 40: 1056-1061
[19]Uribelarrea M, Cárcova J, Otegui M E, Westgate M E. Pollen production, pollination dynamics, and kernel set in maize. Crop Sci, 2002, 42: 1910-1918
[20]Struik P C, Doorgeest M, Boonman J G. Environmental effects on flowering characteristics and kernel set of maize (Zea may L.). Neth J Agric Sci, 1986, 34: 469-484
[21]Cárcova J, Andrieu B, Otegui M E. Silk elongation in maize: relationship with flower development and pollination. Crop Sci, 2003, 43: 914-920
[22]Berke T, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542-1549
[23]Khairallah M, Bohn M, Jiang C Z, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Z Pflanzenzuecht, 1998, 117: 309-318
[24]Hu Y-M(胡彦民), Wu X(吴欣), Li C-X(李翠香), Fu Z-Y(付志远), Liu Z-H(刘宗华), Tang J-H(汤继华). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J Nanjing Agric Univ (南京农业大学学报), 2008, 31(1): 11-16 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[5] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[6] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[7] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[11] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[12] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[13] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[14] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!