欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1931-1940.doi: 10.3724/SP.J.1006.2010.01931

• 耕作栽培·生理生化 • 上一篇    下一篇

种子引发对水分胁迫下水稻发芽及幼苗生理性状的影响

孙园园1,2,孙永健1,王明田1,2,李旭毅1,郭翔1,胡蓉1,马均1,*   

  1. 1 四川农业大学水稻研究所, 四川温江 611130; 2 四川省农业气象中心, 四川成都 610071
  • 收稿日期:2010-06-02 修回日期:2010-06-30 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 马均, E-mail: majunp2002@163.com
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2006BAD02A05), 四川省育种攻关专项(2006yzgg-28), 四川现代农业产业技术体系建设和四川省气象局重点课题(08-03)水稻干旱机理与诊断评估技术研究资助。

Effects of Seed Priming on Germination and Seedling Growth of Rice under Water Stress

SUN Yuan-Yuan1,2,SUN Yong-Jian1,WANG Ming-Tian1,2,LI Xu-Yi1,GUO Xiang1,HU Rong1,MA Jun1,*   

  1. 1 Rice Research Institute of Sichuan Agricultural University, Wenjiang 611130, China; 2 Agrometeorological Center of Sichuan Meteorological Bureau, Chengdu 610071, China
  • Received:2010-06-02 Revised:2010-06-30 Published:2010-11-12 Published online:2010-08-30
  • Contact: MA Jun,E-mail: majunp2002@163.com

摘要: 不同基因型稻种经水引发及聚乙二醇(PEG)渗透胁迫引发处理均能降低稻种丙二醛(MDA)含量,促进可溶性总糖(SS)降解,加快稻种内部糖代谢进程,提高相溶性溶质脯氨酸(Pro)及可溶性蛋白质(SP)含量,也有利于提高苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,引发效果较明显。且适度PEG引发稻种的效果明显好于水引发,杂交籼稻在PEG浓度为20%的条件下引发效果最优,而常规粳型水稻在PEG浓度为10%~15%的引发条件下效果较好,但超出最高PEG引发浓度的阈值,会对稻种产生危害,影响其正常萌发。引发处理后的稻种对不同程度水分胁迫程度的响应表明,适当强度的引发处理利于激发稻种物质代谢、利于各水稻品种的萌发、幼苗形态指标及保护性酶等生理指标的显著提高,而严重的水分胁迫均不利于稻种萌发;表明引发处理虽能提高水分胁迫条件下种子活力,但稻种激发自身对外界萌发环境的协调能力有限,且不同品种间存在明显差异,籼稻优于粳稻。

关键词: 种子引发, 不同基因型水稻, 水分胁迫, 发芽, 生理特性

Abstract: Seeds of four different rice genotypes, Gangyou 527, Yangdao 6, Zhonghan 3 and Nongken 57, were treated with two priming method, H2O and different concentrations of polyethylene glycol (PEG). Nonprimed or primed seeds were germinated under different water stress. The contents of proline, soluble protein (SP), total soluble sugars (SS), malonicdialdehyde (MDA), phenylalanine ammonia lyase (PAL), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) in seeds or stressed seedlings, and seed germination and rice seedling characteristics were determined. The results showed that significantly higher levels of proline and SP and lower levels of SS and the content of MDA in primed seeds were observed as compared with control (nonprimed seeds). Priming accelerated the process of glucose metabolism, improved the activities of PAL, SOD, CAT and POD in stressed different genotypic rice seeds, moreover, priming effects was relatively significant. Rice seeds could be initiated significantly better by the priming of proper PEG concentration than hydropriming. The results showed that the best priming conditions was 20% PEG for hybrid indica rice seeds, and 10%–15% PEG for conventional japonica rice seeds. Normal germination of rice seeds it was inhibited when PEG content was beyond the threshold. Response of hydroprimed seeds or PEG primed seeds on seedlings growth of different genotypic rice under different water stresses. Showed that the proper water stress could activate material metabolism, promote rice seeds germination, and significantly increase kinds of physiological index of seedlings in different genotypes of rice, such as morphological index and protective enzymes after the treatment of proper PEG content, But it went against and serious water stress to inhibited germination..It showed that although seed priming treatment could improve activity of rice seedlings, the coordination ability to external germinating environment by self-regulation was limited. It also indicated that indica rice had greater PEG tolerance than conventional japonica rice, but better priming effects were observed in hybrid indica rice.

Key words: Seed priming, Different rice genotypes, Water stress, Germination, Physiological characteristics

[1]Heydecker W. Germination of an idea: the priming of seeds. University of Nottingham School of Agriculture Report, 1973/1974. pp 50–67
[2]Heydecker W, Coolbear P. Seed treatments for improved performance survey and attempted prognosis. Seed Sci Technol, 1977, 5: 353–425
[3]Harris D, Joshi A K, Sodhi P S. On-farm seed priming in semiarid agriculture development and evaluation in maize, rice, and chickpea in India using participatory methods. Exp Agric, 1999, 35: 15–19
[4]Bradford K J. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience, 1986, 21: 1105–1112
[5]Lü X-H(吕小红), Fu J-R(傅家瑞). Effects of PEG pretreatment in vigor and hardiness on seed vigor of peanut. Acta Scifntiarum Naturalium Universitatis Sunyaatseni (中山大学学报×自然科学版), 1990, 29(1): 63–70 (in Chinese with English abstract)
[6]Liao X-R(廖祥儒), Zhu X-C(朱新产). Effect of seed priming on improving resistance of wheat to osmotic stress. Chin Bull Bot (植物学通报), 1997, 14(2): 36–40 (in Chinese with English abstract)
[7]Wang Y-R(王彦荣), Zhang J-Q(张建全), Liu H-X(刘慧霞), Hu X-W(胡小文). Physiological and ecological responses of alfalfa and milkvetch seed to PEG priming. Acta Ecol Sin (生态学报), 2004, 24(3): 402–408 (in Chinese with English abstract)
[8]Sivritepe H O, Eris A, Sivritepe N. The effect of NaCl priming on salt tolerance in melon seedlings. Acta Hort, 1999, 492: 77–84
[9]Ruan S-L(阮松林), Xue Q-Z(薛庆中), Wang Q-H(王清华). Physiological effects of seed priming on salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 2003, 36 (4): 463–468 (in Chinese with English abstract)
[10]Wang X(王熹), Shen B(沈波). Effect of MET-soaked seed on drought resistance of rice seedlings. Acta Phytophysiol Sin (植物生理学报), 1991, 17(1): 105–108 (in Chinese with English abstract)
[11]Chou X-R(瘳祥儒), Sun Q(孙群). Cobaltous ion inhibits the inducement of mungbean draught resistance by seed priming. Seed (种子), 1994, (3): 29–32 (in Chinese with English abstract)
[12]Mittal R, Dubey R S. Influence of sodium chloride salinity on polyphenol oxidase, indole 3-acetic acid oxidase and catalase activities in rice seedlings differing in salt tolerance. Tropical Sci, 1995, 35: 141–149
[13]Bohnert H J, Shen B. Transformation and compatible solutes. Sci Hort, 1999, 78: 237–260
[14]An Y-P(安永平), Qiang A-L(强爱玲), Zhang Y-Y(张媛媛), Zhang W-Y(张文银), Cao G-L(曹桂兰), Han L-Z(韩龙植). Study on characteristics of germination and drought-resistance index by osmotic stress in rice. J Plant Genet Resour (植物遗传资源学报), 2006, 7(4): 421–426 (in Chinese with English abstract)
[15]Wang H-Z(王贺正), Ma J(马均), Li X-Y(李旭毅), Zhang R-P(张荣萍), Li Y(李艳). Study on drought resistance and screening of the rought resistance assessment indexes at germinating stage of rice. Southwest China J Agric Sci (西南农业学报), 2004, 17(5): 594–599 (in Chinese with English abstract)
[16]Gu G-P(顾龚平), Wu G-R(吴国荣), Lu C-M(陆长梅), Zhou C-F(周长芳), Zuo J-J(左吉吉), Wei J-C(魏锦城). Effect of PEG on vigour index and active oxygen metabolism in soybean seeds. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(2): 26–30 (in Chinese with English abstract)
[17]Li J-P(李季平), Gu H-M(古红梅), Wu S-G(吴诗光), Li J-G(李杰刚). Effect of PEG treatment on physiological-biochemical characteristic of sprouting seed in wheat. J Henan Agric Sci (河南农业科学), 2002, (6): 4–6 (in Chinese with English abstract)
[18]Heydecker W, Higgins J, Gulliver R L. Accelerated germination by osmotic seed treatment. Nature, 1973, 246: 42–44
[19]Bi X-H(毕辛华), Dai X-W(戴心维). Seed Science (种子学). Beijing: China Agriculture Press, 1993. pp 60–61 (in Chinese)
[20]Li H-S(李合生). Plant Physiological and Biochemical Principles and Techniques (植物生理生化实验原理和技术). Beijing: China Higher Education Press, 2000 (in Chinese)
[21]Zucker M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol, 1965, 40: 779–784
[22]Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22: 867–880
[23]Wakamatsu K, Takahama U. Changes in peroxidase activity and in peroxidsae isozymes in carrot callus. Physiol Plant, 1993, 88: 167–171
[24]Zhang X-Z(张宪政). Crop Physiological Research Method (作物生理研究法). Beijing: China Agriculture Press, 1992 (in Chinese)
[25]Duan J(段俊), Liang C-Y(粱承邺), Huang Y-W(黄毓文). Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin (植物生理学报), 1997, 23(2): 139–144 (in Chinese with English abstract)
[26]Liu J(刘杰), Liu G-S(刘公社), Qi D-M(齐冬梅), Li F-F(李芳芳), Wang E-H(汪恩华). Effect of PEG on germination and active oxygen metabolism in wildrye (Leymus chinensis) seeds. Acta Prataculturae Sin (草业学报), 2002, 11(1): 59–64 (in Chinese with English abstract)
[1] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[2] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[3] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[4] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[5] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[6] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902.
[7] 王诗雅, 郑殿峰, 冯乃杰, 梁喜龙, 项洪涛, 冯胜杰, 靳丹, 刘美玲, 牟保民. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988-2000.
[8] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[9] 唐海明,肖小平,李超,汤文光,郭立君,汪柯,程凯凯,潘孝晨,孙耿. 不同土壤耕作模式对双季水稻生理特性与产量的影响[J]. 作物学报, 2019, 45(5): 740-754.
[10] 余斌,杨宏羽,王丽,刘玉汇,白江平,张峰,王蒂,张俊莲. 马铃薯冠气温差变化特性与耐旱性的关系[J]. 作物学报, 2018, 44(7): 1086-1094.
[11] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[12] 卢克欢,刘兴,杨怡,廖志华,吴能表. UV-B胁迫下Ca 2+对颠茄生理特性与次生代谢产物的调控研究[J]. 作物学报, 2018, 44(10): 1527-1538.
[13] 王瑞, 张秀艳, 陈阳松, 杜依聪, 汤继华, 王国英, 郑军. 一个新的玉米Vp15基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2018, 44(03): 369-375.
[14] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[15] 韦荔全,罗延敏,王文强,池长程,黄福灯,向珣,程方民,潘刚. 水稻斑点叶突变体splZ97的生理特性及其基因定位[J]. 作物学报, 2017, 43(05): 648-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!