欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2191-2195.doi: 10.3724/SP.J.1006.2010.02191

• 研究简报 • 上一篇    

利用SSR分子标记分析茶树地方品种的遗传多样性

王丽鸳1,姜燕华1,段云裳2,成浩1,*,周健1,曾建明1,韦康1   

  1. 1中国农业科学院茶叶研究所 / 国家茶树改良中心,浙江杭州 310008;2南京农业大学,江苏南京 210095
  • 收稿日期:2010-05-18 修回日期:2010-08-02 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 成浩, E-mail: chenghao@mail.tricaas.com
  • 基金资助:

    本研究由现代农业产业技术体系建设专项(nycytx-23)资金资助。

Genetic Diversity of Tea Landraces Using SSR Markers

WANG Li-Yuan1,JIANG Yan-Hua1,DUAN Yun-Shang2,CHENG Hao1,*,ZHOU Jian1,ZENG Jian-Ming1,WEI Kang1   

  1. 1 Tea Research Institute, Chinese Academy of Agricultural Sciences / National Center for Tea Improvement, Hangzhou 310008, China; 2 Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-05-18 Revised:2010-08-02 Published:2010-12-12 Published online:2010-10-09
  • Contact: CHENG Hao,E-mail:chenghao@mail.tricaas.com

摘要: 正确评价茶树地方品种的遗传多样性是有效保护和利用茶树地方品种的前提条件。本研究从西湖龙井群体种中选取91个单株,用SSR分子标记分析其遗传多样性。采用计算机模拟方法,探讨了抽样群体样本量、SSR引物等位基因数影响茶树地方品种的主要遗传多样性参数值的变化规律。结果表明,样本量对茶树地方品种的遗传多样性参数值有不同程度的影响,当样本量达到15个单株时,各遗传参数值趋于稳定;SSR引物等位基因数对茶树地方品种各遗传多样性参数值的影响很大,而且达到总体遗传多样性90%所需的样本量也很不一样。当SSR引物等位基因数为5时,24个茶树单株才能达到茶树地方品种总体90%以上的遗传变异。本研究为茶树地方品种遗传多样性的评价和采用合理的保护策略提供了科学依据。

关键词: SSR标记, 茶树, 遗传多样性, 取样策略

Abstract: Appropriate assessment of genetic diversity in tea landraces is the prerequisite of conservation and utilization of these valuable genetic resources. Ninety-one individual tea plants, from Longjing tea landrace population, were used in this study. Computer simulation was utilized to study the changes of genetic diversity parameters influenced by the number of samples and alleles per SSR locus. The results showed that the sampling number differentially affected the genetic diversity parameters. Only when the sample number was higher than 15, the parameters tended to be stable. There were also large effects of the number of alleles per SSR locus on the genetic diversity, which was closely associated with the sample number. It was found when the number of alleles per SSR locus was five, at least 24 individual tea plants were needed for reaching to 90% of the total genetic diversity of tea landraces. The results are useful for providing scientific basis for the assessment of genetic diversity and appropriate conservation strategies of tea landraces.

Key words: SSR, Tea landraces, Genetic diversity, Sampling strategy

[1]China Tea Varieties Compilation Committee. China Tea Varieties (中国茶树品种志). Shanghai: Shanghai Scientific and Technical Publishers, 2001 ( in Chinese)
[2]Li L-M(李腊梅), Ma J-H(马军辉), Luo L-W(罗列万), Wang X-C(王校常). The spread of tea cultivar Longjing 43 in Zhejiang province and its economic benefit analysis. J Tea (茶叶), 2007, 33(1): 38–41 (in Chinese with English abstract)
[3]Yang S-J(杨素娟), Wang Y-S(王玉书), Yang Y-J(杨亚军). Breeding of early-growing and high-qualified green tea cultivar Longjingchangy. Chin Tea (中国茶叶), 1995, (6): 14–161(in Chinese)
[4]Li Y(黎裕), Wang T-Y(王天宇), Tian S-J(田松杰), Shi Y-S(石云素), Song Y-C(宋燕春). Sampling strategies of maize populations when molecular markers are used in genetic diversity analysis. J Plant Genet Resour (植物遗传资源学报), 2003, 4(4): 314–317 (in Chinese with English abstract)
[5]Zhao R(赵茹), Cheng Z(程舟), Lu W-F(陆伟峰), Lu B-R(卢宝荣). Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chin Sci Bull (科学通报), 2006, 51(9): 1042–1048(in Chinese)
[6]Jin Y(金燕), Lu B-R(卢宝荣). Sampling strategy for genetic diversity. Chin Biodiversity (生物多样性), 2003, 11(2): 155–161 (in Chinese with English abstract)
[7]Wachira F N, Waugh R, Hackett C A, Powell W. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38: 201–210
[8]Shen C-W(沈程文). Studies on Genomic Variance among Anhua Yun-tai-shan Populations of Tea Plants. MS Dissertation of Hunan Agricultural University, 2001. pp 18–28 (in Chinese with English abstract)
[9]Ji P-Z(季鹏章), Zhang J(张俊), Wang P-S(王平盛), Huang X-Q(黄兴奇), Xu M(许玫), Tang Y-C(唐一春), Liang M-Z(梁名志). Genetic diversity of ancient tea plant in Yunnan Province of China revealed by inter-simple sequence repeat (ISSR) polymerase Chain reaction. J Tea Sci (茶叶科学), 2007, 27(4): 271–279 (in Chinese with English abstract)
[10]Ohsako T, Ohgushi T, Motosugi H, Oka K. Microsatellite variability within and among local landrace populations of tea, Camellia sinensis L. O. Kuntze, in Kyoto, Japan. Genet Resour Crop Evol, 2008, 55: 1047–1053
[11]Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 1: 215–222
[12]Xu Y, Ma R C, Xie H, Liu J T, Cao M Q. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome, 2004, 47: 1091–1104
[13]Wu X-L(吴晓雷), He C-Y(贺超英), Chen S-Y(陈受宜), Zhuang B-C(庄炳昌), Wang K-J(王克晶), Wang X-C(王学臣). Phylogenetic analysis of interspecies in genus glycine through SSR markers. Acta Genet Sin (遗传学报), 2001, 28(4): 359–366 (in Chinese with English abstract)
[14]Liu B-Y(刘本英), Wang P-S(王平盛), Zhou H-J(周红杰), Ji P-Z(季鹏章), Cheng Z-Q(程在全). The ISSR-PCR reaction system’s establishment about Yunnan tea plant. Yunnan Agric Univ (云南农业大学学报), 2006, 21(suppl): 21–25(in Chinese with English abstract)
[15]Wang L-Y(王丽鸳), Jiang Y-H(姜燕华), Duan Y-S(段云裳), Cheng H(成浩), Zhou J(周健), Zeng J-M(曾建明). Characterization of EST-derived microsatellites and development of SSR-markers in tea (Camellia sinensis). J Plant Genet Resour (植物遗传资源学报), 2009, 10(4): 511–516 (in Chinese with English abstract)
[16]Yang J B, Yang J, Li H T, Zhao Y, Yang S X. Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method. Conserv Genet, 2009, 10: 1621–1623.
[17]Liu Z(刘振), Wang X-C(王新超), Zhao L-P(赵丽萍), Yao M-Z(姚明哲), Wang P-S(王平盛), Xu M(许玫), Tang Y-C(唐一春), Chen L(陈亮). Genetic diversity and relationship analysis of tea germplasm originated from south western China based on EST-SSR. Mol Plant Breed (分子植物育种), 2008, 6(1): 100–110 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[7] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[8] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[9] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[10] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[11] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[12] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[13] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[14] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[15] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!