欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2091-2098.doi: 10.3724/SP.J.1006.2010.02091

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

含CBS结构域的小麦TaCDCP1基因的克隆及其表达分析

王晓敏1,冯浩1,孙燕飞1,刘博1,王晓杰1,徐亮胜1,于秀梅1,魏国荣1,黄丽丽1,康振生1,2,*   

  1. 1 西北农林科技大学植物保护学院,陕西杨凌 712100;2 西北农林科技大学陕西省农业分子生物学重点实验室,陕西杨凌 712100
  • 收稿日期:2010-05-24 修回日期:2010-08-03 出版日期:2010-12-12 网络出版日期:2010-10-22
  • 通讯作者: 康振生,E-mail:kangzs@nwsuaf.edu.cn
  • 基金资助:

    本研究由国家自然科学基金重点项目(30930064),现代农业产业技术体系建设专项资金和高等学校学科创新引智计划资助项目(B07049)资助。

Cloning and Expression Analysis of a CBS Domain Containing Protein Gene TaCDCP1 from Wheat

WANG Xiao-Min1,FENG Hao1,SUN Yan-Fei1,LIU Bo1,WANG Xiao-Jie1,XU Liang-Sheng1,YU Xiu-Mei1,WEI Guo-Rong1,HUANG Li-Li1,KANG Zhen-Sheng1,2,*   

  1. 1 College of Plant Protection, Northwest A&F University, Yangling 712100, China; 2 Shaanxi Provincial Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
  • Received:2010-05-24 Revised:2010-08-03 Published:2010-12-12 Published online:2010-10-22
  • Contact: 康振生,E-mail:kangzs@nwsuaf.edu.cn

摘要: 利用电子克隆和RT-PCR技术,在本实验室前期构建的非亲和互作的SSH文库基础上,从条锈菌侵染的小麦水原11叶片中首次分离出一个含CBS结构域蛋白的基因,暂命名为TaCDCP1 (Triticum aestivum CBS domain containing protein 1)。TaCDCP1包含一个完整的654 bp的开放阅读框,编码217个氨基酸。推测编码的蛋白具有两个CBS保守结构域,不含跨膜区且无信号肽,定位在叶绿体基质内;经过同源比对,小麦TaCDCP1氨基酸序列与大麦、水稻和玉米等的同源序列的相似性较高;该基因表达量在小麦叶中显著高于在根和茎中;在小麦与条锈菌的非亲和、亲和组合中,TaCDCP1基因均受到条锈菌诱导,分别在接种后18 h和96 h达到表达高峰,非亲和组合表达量在侵染前期(接种后18~48 h)高于亲和组合,而在侵染后期(接种后96~120 h)低于亲和组合;外源植物激素脱落酸诱导该基因上调表达,苄基腺嘌呤,乙烯,赤霉素,茉莉酸甲酯和水杨酸处理后其表达量在不同程度上受到抑制;TaCDCP1在低温和干旱条件下表达量上升,在机械伤害和高盐处理下表达量无明显差异。表明TaCDCP1可能通过脱落酸等信号途径参与小麦对条锈菌的防御反应,同时参与低温和干旱环境下的信号转导途径。这些结果对于明确CBS结构域的功能以及CBS结构域蛋白尤其是TaCDCP1在小麦与条锈菌互作中的作用奠定了基础。

关键词: 小麦, 条锈菌, CBS结构域, 非生物胁迫, 基因表达

Abstract: To elucidate the defense response of wheat(Triticum aestivum L.) to Puccinia striiformis f. sp. tritici (Pst), we constructed the incompatible interaction SSH cDNA library of wheat(cv. Suwon 11) leaves infected by Pst CYR23. A total of 652 unigenes were identified and 424 genes were annotated. On the basis of previous study, according to cDNA sequence LWSRP2502 (Genbank accession No. EV254338), a full-length sequence of the CBS domain containing protein gene, tentatively designated as TaCDCP1 (Triticum aestivum CBS domain containing protein 1), was isolated and characterized from wheat leaves infected by Pst through in silico cloning and reverse transcription PCR (RT-PCR) approaches.The open reading frame of TaCDCP1 was 654 bp in length andpredicted to encode 217 amino acids protein which contained two conserved cystathionine beta-synthase (CBS) domains and was without transmembrane domain or signal peptide sequence. The deduced protein was predicted existing in chloroplast stroma. The amino acid sequence of TaCDCP1 shares 92%, 72%, and 63% identify withthe homologs in barley (Hordeum vulgare) , rice (Oryza sativa) and maize (Zea mays), respectively. The TaCDCP1 gene was highly expressed in leaves than in roots and stems. Challenged by Pst, TaCDCP1 was induced by this fungus in both incompatible and compatible interactions, with the maximal expression at 18 h post inoculation (hpi) and 24 hpi, respectively. Its transcript accumulation was much higher in the incompatible interaction than in the compatible interaction at the early stage of infection (18–48 hpi), but much lower at the late stage (96–120 hpi). The expression of TaCDCP1 wasalso up-regulated after treated by phytohormones such as abscisic acid (ABA), and down-regulated by benzyladenine, ethylene, gibberellins, methyl jasmonate and salicylic acid to a certain degree. And it was obviously up-regulated by various abiotic stresses, such as low temperature and drought. However, mechanical wound and high salinity stress could not induce the expression of TaCDCP1. These results suggest that TaCDCP1 is probably involved in the disease resistance and defense response in wheat to Pst through ABA and ethylene pathways, and also participate in the signal transmission pathways under low temperature, and drought conditions.

Key words: Wheat, Stripe rust fungus, CBS domain, Abiotic stresses, Gene expression

[1]Chen X M, Line R F. Inheritance of stripe rust (yellow rust) resistance in the wheat cultivar Carstens V. Euphytica, 1993, 71: 107–113
[2]Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337
[3]Li Z-Q(李振岐), Zeng S-M(曾士迈). Stripe Rust in China (中国小麦锈病). Beijing: China Agriculture Press, 2002. pp 2–3 (in Chinese)
[4]Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci, 1997, 22: 12–13
[5]Hemant R K, Anil K S, Sudhir K S, Sneh L S P, Ashwani P. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics, 2009, 10: 200
[6]Woods A, Cheung P C F, Smith F C, Davison M D, Scott J, Beri R K, Carling D. Characterization of AMP-activated protein kinase and subunits. J Biol Chem, 1996, 271: 10282–10290
[7]Sintchak M D, Fleming M A, Futer O, Raybuck S A, Chambers S P, Caron P R, Murcko M A, Wilson K P. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell, 1996, 85: 921–930
[8]Schmidt-Rose T, Jentsch T J. Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1. J Biol Chem, 1997, 272: 20515–20521
[9]Shan X Y, Kruger W D. Correction of disease-causing CBS mutations in yeast. Nat Genet, 1998, 19: 91–93
[10]Ignoul S, Eggermont J. CBS domains: structure, function, and pathology in human proteins. Am J Physiol-Cell Physiol, 2005, 289: 1369–1378
[11]Wang X L, Ren X, Zhu L L, He G C. OsBi1, a rice gene, encodes a novel protein with a CBS-like domain and its expression is induced in responses to herbivore feeding. Plant Sci, 2004, 166: 1581–1588
[12]Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y. Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Res, 2010, DOI: 10.1093/dnares/dsq009
[13]Yu X-M(于秀梅). Construction of SSH cDNA library of Wheat Leaves Induced by Puccinia striiformis and Its ESTs Analysis. PhD Dissertation of Northwest A&F University, 2006. pp 62–66 (in Chinese with English abstract)
[14]Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll (西北农林科技大学学报), 1984, 12(4): 18–28 (in Chinese with English abstract)
[15]Zhang H B, Zhang D B, Chen J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834
[16]Sato K, Shin-I T, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y. Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res, 2009, 16: 81–89
[17]Alexandrov N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol, 2009, 69: 179–194
[18]Yu X M, Yu X D, Qu Z P, Huang X J, Guo J, Han Q M, Zhao J, Huang L, Kang Z S. Cloning of a putative hypersensitive induced reaction gene from wheat infected by stripe rust fungus. Gene, 2008, 407: 193–198
[19]Yu G X, Braun E, Wise R P. Rds and Rih mediate hypersensitive cell death independent of gene-for-gene resistance to the oat crown rust pathogen Puccinia coronata f. sp. avenae. Mol Plant Microbe Interact, 2001, 14: 1376–1383
[20]Hand J-D(韩建东), Cao Y-Y(曹远银), Yao P(姚平). Hypersensitive response and activity dynamics of defense enzymes induced by elicitor(s) from wheat-stem rust interaction systerm. Acta Agr Boreali-Sinica (华北农学报), 2009, 24(1): 79–82 (in Chinese with English abstract)
[21]Wang C F, Huang L L, Buchenauer H, Han Q M, Zhang H C, Kang Z S. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol, 2007, 71: 230–239
[22]Kang Z S, Huang L L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Protect, 2002, 109: 25–37
[23]Zhu Q, Dröge-Laser W, Dixon R A, Lamb C. Transcriptional activation of plant defense genes. Curr Opin Genet Dev, 1996, 6: 624–630
[24]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol, 1999, 2: 280–286
[25]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227
[26]Koornneef A, Pieterse C M J. Crosstalk in defense signaling. Plant Physiol, 2008, 146: 839–844
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!