作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2091-2098.doi: 10.3724/SP.J.1006.2010.02091
王晓敏1,冯浩1,孙燕飞1,刘博1,王晓杰1,徐亮胜1,于秀梅1,魏国荣1,黄丽丽1,康振生1,2,*
WANG Xiao-Min1,FENG Hao1,SUN Yan-Fei1,LIU Bo1,WANG Xiao-Jie1,XU Liang-Sheng1,YU Xiu-Mei1,WEI Guo-Rong1,HUANG Li-Li1,KANG Zhen-Sheng1,2,*
摘要: 利用电子克隆和RT-PCR技术,在本实验室前期构建的非亲和互作的SSH文库基础上,从条锈菌侵染的小麦水原11叶片中首次分离出一个含CBS结构域蛋白的基因,暂命名为TaCDCP1 (Triticum aestivum CBS domain containing protein 1)。TaCDCP1包含一个完整的654 bp的开放阅读框,编码217个氨基酸。推测编码的蛋白具有两个CBS保守结构域,不含跨膜区且无信号肽,定位在叶绿体基质内;经过同源比对,小麦TaCDCP1氨基酸序列与大麦、水稻和玉米等的同源序列的相似性较高;该基因表达量在小麦叶中显著高于在根和茎中;在小麦与条锈菌的非亲和、亲和组合中,TaCDCP1基因均受到条锈菌诱导,分别在接种后18 h和96 h达到表达高峰,非亲和组合表达量在侵染前期(接种后18~48 h)高于亲和组合,而在侵染后期(接种后96~120 h)低于亲和组合;外源植物激素脱落酸诱导该基因上调表达,苄基腺嘌呤,乙烯,赤霉素,茉莉酸甲酯和水杨酸处理后其表达量在不同程度上受到抑制;TaCDCP1在低温和干旱条件下表达量上升,在机械伤害和高盐处理下表达量无明显差异。表明TaCDCP1可能通过脱落酸等信号途径参与小麦对条锈菌的防御反应,同时参与低温和干旱环境下的信号转导途径。这些结果对于明确CBS结构域的功能以及CBS结构域蛋白尤其是TaCDCP1在小麦与条锈菌互作中的作用奠定了基础。
[1]Chen X M, Line R F. Inheritance of stripe rust (yellow rust) resistance in the wheat cultivar Carstens V. Euphytica, 1993, 71: 107–113 [2]Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337 [3]Li Z-Q(李振岐), Zeng S-M(曾士迈). Stripe Rust in China (中国小麦锈病). Beijing: China Agriculture Press, 2002. pp 2–3 (in Chinese) [4]Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci, 1997, 22: 12–13 [5]Hemant R K, Anil K S, Sudhir K S, Sneh L S P, Ashwani P. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics, 2009, 10: 200 [6]Woods A, Cheung P C F, Smith F C, Davison M D, Scott J, Beri R K, Carling D. Characterization of AMP-activated protein kinase and subunits. J Biol Chem, 1996, 271: 10282–10290 [7]Sintchak M D, Fleming M A, Futer O, Raybuck S A, Chambers S P, Caron P R, Murcko M A, Wilson K P. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell, 1996, 85: 921–930 [8]Schmidt-Rose T, Jentsch T J. Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1. J Biol Chem, 1997, 272: 20515–20521 [9]Shan X Y, Kruger W D. Correction of disease-causing CBS mutations in yeast. Nat Genet, 1998, 19: 91–93 [10]Ignoul S, Eggermont J. CBS domains: structure, function, and pathology in human proteins. Am J Physiol-Cell Physiol, 2005, 289: 1369–1378 [11]Wang X L, Ren X, Zhu L L, He G C. OsBi1, a rice gene, encodes a novel protein with a CBS-like domain and its expression is induced in responses to herbivore feeding. Plant Sci, 2004, 166: 1581–1588 [12]Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y. Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Res, 2010, DOI: 10.1093/dnares/dsq009 [13]Yu X-M(于秀梅). Construction of SSH cDNA library of Wheat Leaves Induced by Puccinia striiformis and Its ESTs Analysis. PhD Dissertation of Northwest A&F University, 2006. pp 62–66 (in Chinese with English abstract) [14]Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll (西北农林科技大学学报), 1984, 12(4): 18–28 (in Chinese with English abstract) [15]Zhang H B, Zhang D B, Chen J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834 [16]Sato K, Shin-I T, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y. Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res, 2009, 16: 81–89 [17]Alexandrov N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol, 2009, 69: 179–194 [18]Yu X M, Yu X D, Qu Z P, Huang X J, Guo J, Han Q M, Zhao J, Huang L, Kang Z S. Cloning of a putative hypersensitive induced reaction gene from wheat infected by stripe rust fungus. Gene, 2008, 407: 193–198 [19]Yu G X, Braun E, Wise R P. Rds and Rih mediate hypersensitive cell death independent of gene-for-gene resistance to the oat crown rust pathogen Puccinia coronata f. sp. avenae. Mol Plant Microbe Interact, 2001, 14: 1376–1383 [20]Hand J-D(韩建东), Cao Y-Y(曹远银), Yao P(姚平). Hypersensitive response and activity dynamics of defense enzymes induced by elicitor(s) from wheat-stem rust interaction systerm. Acta Agr Boreali-Sinica (华北农学报), 2009, 24(1): 79–82 (in Chinese with English abstract) [21]Wang C F, Huang L L, Buchenauer H, Han Q M, Zhang H C, Kang Z S. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol, 2007, 71: 230–239 [22]Kang Z S, Huang L L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Protect, 2002, 109: 25–37 [23]Zhu Q, Dröge-Laser W, Dixon R A, Lamb C. Transcriptional activation of plant defense genes. Curr Opin Genet Dev, 1996, 6: 624–630 [24]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol, 1999, 2: 280–286 [25]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227 [26]Koornneef A, Pieterse C M J. Crosstalk in defense signaling. Plant Physiol, 2008, 146: 839–844 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[13] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|