作物学报 ›› 2011, Vol. 37 ›› Issue (01): 177-181.doi: 10.3724/SP.J.1006.2011.00177
肖强1,杨曙1,郑海雷2,*
XIAO Qiang1,YANG Shu1,ZHENG Hai-Lei2,*
摘要: 一氧化氮(nitric oxide, NO)是植物中一种重要的信号分子, 在诱导种子萌发, 影响植物生长发育, 促进植物细胞衰亡等方面发挥着重要作用。然而对于外源NO是否参与了Se诱导的脂质过氧化调节过程仍不为人知。我们研究了0.2 μmol L-1和20 μmol L-1Na2SeO3及一氧化氮供体硝普钠(sodium nitroprusside, SNP)处理对水稻叶片叶绿素、H2O2和硫代巴比妥酸反应产物(Thiobarbituric Acid Reactive Substances, TBARS)含量, 愈创木酚过氧化物酶(guaiacol peroxidase, GPX)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)以及抗坏血酸过氧化物酶(ascorbate peroxidase, APX)活性等生理生化指标的影响。结果表明, 1 μmol L-1SNP处理促进GPX、APX和CAT活性, 缓解膜脂过氧化, 降低TBARS含量; 显著提高0.2 μmol L-1Na2SeO3处理下水稻叶片中叶绿素含量。在20 μmol L-1Na2SeO3处理下, 外加1 μmol L-1SNP更加显著促进GPX和CAT活性, 与此同时明显降低20 μmol L-1Na2SeO3处理引起的H2O2含量上升, 并降低TBARS含量。NO对植物中由Se引起的脂质过氧化具有调节作用。
[1]Neill S J, Desikan R, Hancock J T. Nitric oxide signaling in plants. New Phytol, 2003, 159: 11–35 [2]Clark D, Durner J, Navarre D A, Klessig D F. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact, 2000, 13: 1380–1384 [3]Cheng F Y, Hsu S Y, Kao C H. Nitric oxide counteracts the senescence of detached rice leaves induced by dehydration and polyethylene glycol but not by sorbitol. Plant Growth Regul, 2002, 38: 265–272 [4]Kopyra M, Gwózdz E A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem, 2003, 41: 1011–1017 [5]Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou J P, Pugin A, Wendehenne D. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol, 2009, 149: 1302–1315 [6]Xiao Q, Ru Q M, Wu F H, Huang X, Pei Z M, Zheng H L. Nitric oxide alleviates oxidative stress caused by lanthanum in rice leaves. J Rare Earths, 2007, 25: 631–636 [7]Xue Q-L(薛秦麟), Hou S-F(侯少范), Tan J-A(谭见安), Liu G-L(刘更另). Antioxidant effect of Se in higher plants. Chin Sci Bull (科学通报), 1993, 38(3): 274–277 (in Chinese) [8]Sors T G, Ellis D R, Salt D E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res, 2005, 86: 373–389 [9]Rios J J, Blasco B, Cervilla L M, Rosales M A, Sanchez-Rodriguez E, Romero L, Ruiz J M. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol, 2009, 154: 107–116 [10]Liu K-L(刘开力), Han H-R(韩航如), Xu Y-J(徐颖洁), Ling T-F(凌腾芳), Liu Z-B(刘志兵), Sun Y-G(孙永刚), Hua R(花榕), Shen W-B(沈文飚). Exogenous nitric oxide alleviates salt stress-induced membrane lipid peroxidation in rice seedling roots. Chin J Rice Sci (中国水稻科学), 2005, 19(4): 333–337 (in Chinese with English abstract) [11]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15 [12]Mukherjee S P, Choudhuri M A. Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol Plant, 1983, 58: 166–170 [13]Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catase. J Exp Bot, 1981, 32: 93–101 [14]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 1976, 72: 248–254 [15]Beauchamp C, Fridovich I. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Anal Biochem, 1971, 44: 276–287 [16]Ruan H H, Shen W B, Ye M B, Xu L L. Protective effects of nitric oxide on salt stress-induced oxidative damages to wheat (Triticum aestivum L.) leaves. Chin Sci Bull, 2002, 47: 677–681 [17]Chance B, Maehly A. Assay of catalases and peroxidase methods. Method Enzymol, 1955, 2: 764–775 [18]Parida, A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol, 2004, 161: 531–542 [19]Lin K-F(林匡飞), Xu X-Q(徐小清), Jin X(金霞) , Shao Z-H(邵志慧), Xiang Y-L(项雅玲). Eco-toxicological effects of selenium and its critical value on Oryza sativa. Chin J Appl Ecol (应用生态学报), 2005, 16(4): 678–682 (in Chinese with English abstract) [20]Delledonne M, Xia Y J, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585–588 [21]Lum H K, Lee C H, Butt Y K C, Lo S C L. Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). Nitric Oxide, 2005, 12: 220–230 [22]Takahashi S, Yamasaki H. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett, 2002, 512: 145–148 [23]Wu Y-Y(吴永尧), Lu X-Y(卢向阳), Peng Z-K(彭振坤), Luo Z-M(罗泽民). Effect of Se on physiological and biochemical characters of paddy rice. Sci Agric Sin (中国农业科学), 2000, 33(1): 100–103 (in Chinese with English abstract) [24]Laxalt A M, Beligni M V, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol, 1997, 103: 643–651 [25]Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 1999, 208: 337–344 [26]Jasid S, Simontacchi M, Bartoli C G, Puntarulo S. Chloroplasts as a nitric oxide cellular source-effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol, 2006, 142: 1246–1255 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[5] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[6] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|