欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2190-2195.doi: 10.3724/SP.J.1006.2008.02190

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆根内胞囊线虫的时空动态研究

李秀侠;王振华;时立波;吴海燕*;毕建杰;李多川   

  1. 山东农业大学植物保护学院,山东泰安271018
  • 收稿日期:2008-03-04 修回日期:2008-05-15 出版日期:2008-12-12 网络出版日期:2008-09-06
  • 通讯作者: 吴海燕
  • 作者简介:李秀侠(1981-),女,硕士研究生,主要从事植物线虫学研究
  • 基金资助:

    中国博士后科学基金项目(20070411104);山东省博士后创新项目专项资金(200703040)

Space-Time Dynamics of Heterodera glycines in Soybean Roots

LI Xiu-Xia,WANG Zhen-Hua,SHI Li-Bo,WU Hai-Yan*,BI Jian-Jie,LI Duo-Chuan   

  1. College of Plant Protection, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2008-03-04 Revised:2008-05-15 Published:2008-12-12 Published online:2008-09-06
  • Contact: WU Hai-Yan

摘要:

于2006—2007年田间自然生长条件下,研究大豆苗期(7~37 d)胞囊线虫(4号生理小种)在根系的时空分布动态。结果表明,大豆胞囊线虫分布与根系生长状况有密切关系。出苗后7 d已有线虫侵入根内,随着根系生长发育,单位根长线虫数以及线虫总数增多,单位根长内线虫数量呈S型曲线变化。随着出苗后天数的增加,主根和侧根内线虫数量变化呈相反趋势,其中主根内线虫密度减少,侧根内线虫密度增加至相对稳定值。随着土层的加深,主根和侧根内线虫密度差异减小;5~15 cm土层根系内线虫数量及其所占比例均最大。说明苗期大豆胞囊线虫主要分布在5~15 cm土层。

关键词: 大豆, 大豆胞囊线虫, 根系, 时空动态

Abstract:

Population of Heterodera glycines fluctuations in the fields during growth of soybean. In order to investigate dynamics of Heterodera glycines in soybean roots, and provide more information of effective control for soybean cyst nematode, distribution and dynamics of soybean cyst nematode (SCN, Heterodera glycines, race 4) in the soybean roots were monitored during the period of 7–37 d after seedling emergence in 2006 and 2007. The results indicated that distribution of SCN population closely related to the growth of roots. Nematodes invaded the roots at 7 days after seedling emergence, and nematode density and population increased with the growth of soybean roots, the fluctuation of nematodes per centimeter root showed a sigmoid curve. The changed of nematodes per cm root showed an inverse trend with the age of seedlings between taproot and lateral root. Nematode density in taproot had a declining trend, when that in lateral root increased to a stable value. Difference of nematode density between taproot and lateral root decreased with deepening the soil layer, number of nematodes per cm root and percent to total nematodes reached the ultimate number in the 5–15 cm soil, suggesting that most of the nematodes distributed in lateral root and at the 5–15 cm soil layer during the soybean seedling stage.

Key words: Soybean, Heterodera glycines, Root, Space-time dynamics

[1]Kim D C, Rakes L, Riggs R D, Robbins R T. Distribution of race of Heterodera glycines in the central United States. J Nematol, 1997, 29: 173-179
[2]Lu W-G(卢为国), Gai J-Y(盖均镒), Li W-D(李卫东). Sam-pling survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai Valleys. Sci Agric Sin (中国农业科学), 2006, 39(2): 306-312 (in Chinese with English abstract)
[3]Wan Y-S(宛煜嵩), Wang Z(王珍). Research progress on soybean cyst nematode in China (Heterodera glycines). Mol Plant Breed (分子植物育种), 2004, 2(5): 609-619(in Chinese with English abstract)
[4]Tefft P M, Bone L W. Plant induced hatching of eggs of the soybean cyst nematode Heterodera glycine. J Nematol, 1985, 17: 275-279
[5]Kushida A, Suwa N, Weda Y. Effects of Crotalaria juncea and C-spectabilis on hatching and population density of the soybean cyst nematode, Heterodera glycines (Tylenchida: Heteroderidae). Appl Entomol Zool, 2003, 38: 393-399
[6]Alston D G. Development of Heterodera glycines Life Stages as Influenced by Temperature. Ralergh: North Carolina State University, 1985
[7]Heatherly L G, Young L D. Soybean and soybean cyst nema-tode response to soil water content in loam and clay soils. Crop Sci, 1991, 31: 191-196
[8]Alston D G, Schmitt D P. Population density and spatial pat-tern of Heterodera glycines in relation to soybean phenology. J Nematol, 1987, 19: 336-345
[9]Anand S C, Matson K W, Sharma S B. Effect of soil tem-perature and pH on resistance of soybean to Heterodera gly-cines. J Nematol, 1995, 27: 478-482
[10]Barker K R. Influence of soil moisture, cultivar, and popula-tion density of Meloidogyne incognita on soybean yield in microplots. J Nematol, 1982, 14: 429
[11]Santo G S, Bolander W J. Interacting effects of soil tempera-ture and type on reproduction and pathogenicity of Heterod-era schachtii and Meloidogyne hapla on sugar-beets. J Nematol, 1979, 11: 289-291
[12]Liu W-Z(刘维志). Technology for Nematologica Research (植物线虫学研究技术). Shenyang: Liaoning Science and Technology Publishing House, 1995 (in Chinese)
[13]Sun G-Y(孙广玉), Zhang R-H(张荣华), Huang Z-W(黄忠文). Soybean root distributions in meadow-blackland and albic-soil. Chin J Oil Crop Sci (中国油料作物学报), 2002, 24(1): 45-47(in Chinese with English abstract)
[14]Sun G-Y(孙广玉), He Y(何庸), Zhang R-H(张荣华), Zhang D-P(张代平). Studies on growth and activities of soybean root. Soybean Sci (大豆科学), 1996, 15(4): 317-321(in Chi-nese with English abstract)
[15]Tefft P M, Rande J F, Bone L W. Factors influencing eggs hatching of the soybean cyst nematode Heterodera glycines Race 3. Proc Helmintholog Soc Washington, 1982, 49: 258-265
[16]Heatherly L G, Young L D, Epps J M, Hartwig E E. Effect of upper-profile soil water potential on numbers of cysts of He- terodera glycines on soybeans. Crop Sci, 1982, 22: 833-835
[17]Alston D G, Schmitt D P. Development of Heterodera gly-cines life stages as influenced by temperature. J Nematol, 1988, 20: 366-372
[18]Prot J C. Migration of plant-parasitic nematodes towards plant roots. Rev Nematol, 1980, 3: 305-318
[19]Curl E A, Truelove B. The Rhizosphere. Berlin: Springer- Verlag, 1986
[20]Zhao X W, Schmitt M, Hawes M C. Species-dependent ef-fects of border cell and root tip exudates on nematode beha- vior. Nematology, 2000, 90: 1239-1245
[21]Li Y-X(李永孝). Soybean in Shandong Province (山东大豆). Jinan: Shandong Science and Technology Press, 1999 (in Chinese)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!