作物学报 ›› 2011, Vol. 37 ›› Issue (04): 603-611.doi: 10.3724/SP.J.1006.2011.00603
李灿东1,2,3,蒋洪蔚1,刘春燕1,郭泰2,王志新2,吴秀红2,郑伟2,邱鹏程3,张闻博3,宋英博2,栾奕娜5,陈庆山3,*,胡国华1,4,*
LI Can-Dong1,2,3,JIANG Hong-Wei1,LIU Chun-Yan1,GUO Tai2,WANG Zhi-Xin2,WU Xiu-Hong2,ZHENG Wei2,QIU Peng-Cheng3,ZHANG Wen-Bo3,SONG Ying-Bo2,LUAN Yi-Na5,CHEN Qing-Shan3,*,HU Guo-Hua1,4,*
摘要: 以红丰11为轮回亲本、Clark为供体亲本构建回交群体进行耐旱性鉴定,对获得选择群体进行全基因组SSR标记扫描,计算供体基因型导入频率,利用卡方测验检测偏分离SSR位点,并结合GGT软件对各连锁群分析, 对5个耐旱相关性状进行QTL定位。以卡方测验检测到23个SSR偏分离位点(超导入),分布于10条连锁群。方差分析表明,8个叶片持水能力QTL分布于A1、B1、C2、E、L和N连锁群;9个根长QTL分布于C2、F、G和I连锁群;11个根干重QTL分布于A2、B1、B2、E、F、K、L、M和O连锁群;12个产量QTL分布于B1、D1a、E、F、G、I、L、M和O连锁群;7个生物量QTL分布于E、F、G、K、L和N连锁群。在E连锁群的Sat_136位点,对于叶片持水能力、根干重、产量和生物量具有一致性;在F连锁群的GMRUBP位点,对于根干重和生物量具有一致性,Satt586位点,对于根长、根干重和产量具有一致性;在K连锁群的Satt167位点,对于根干重和生物量具有一致性,SOYPRP1位点,对于根长和生物量具有一致性;在L连锁群的Satt398位点,对于根长和产量具有一致性,Satt694位点对于叶片持水能力和生物量具有一致性;在M连锁群的GMSL514位点,对于根干重和产量具有一致性;以上位点均与卡方测验检测到的“超导入”位点具有一致性。经过供体等位基因卡方测验和耐旱QTL定位,共检测到33个QTL,其中有17个同时被检测到。这些位点可能是控制大豆耐旱性的重要位点。
[1]Li Y-Y(李原园), Li Y-N(李英能), Su R-Q(苏人琼). Water crisis in agricultural sustainable development and its countermeasures in China. Res Agric Mod (农业现代化研究), 1997, (3): 52–54 (in Chinese with English abstract) [2]Shan L(山仑), Chen G-L(陈国良). Theory and Practice for Droughty Region Agriculture of Loess Plateau (黄土高原旱地农业的理论与实践). Beijing: Science Press, 1993. pp 125–129 (in Chinese) [3]Liu X-Y(刘学义). Discuss on evaluating method to drought-resistance of soybean. Oil Crops China (中国油料), 1986, (4): 23–26 (in Chinese with English abstract) [4]Sloane R J, Patterson R P, Carter T E. Field drought tolerance of soybean plant introduction. Crop Sci, 1990, 30: 118–123 [5]Liu F L, Andersen M N, Jacobsen S E. Stomatal control and water use efficiency of soybean (Glycine max Merrill) during progressive soil drying. Environ Exp Bot, 2004, 54: 1–8 [6]Hudak C M, Patterson R P. Vegetative growth analysis of a drought resistant soybean plant introduction. Crop Sci, 1995, 35: 464–471 [7]Garcia A, Gonzalez M C. Morphological markers for the early selection of drought tolerant rice varieties. Cultivate Trop, 1997, 18: 47–50 [8]Sambrook J, Russell D W. Huang P-T(黄培堂) trans. Molecular Cloning: A Laboratory Manual, 3rd edn (分子克隆实验指南·第3版). Beijing: Science Press, 2002. pp 363–365 (in Chinese) [9]He C-Y(贺超英). Construction of Soybean Genetic Map by SSR and Its Application in Cloning of Disease-Resistance Genes. PhD Dissertations of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. 2001. pp 35–38 [10]Liu Y(刘莹), Cai Q-M(蔡祈明). Root morphology and root traits related to drought tolerance at vegetation stage in soybean. J Hebei Univ Eng (Nat Sci Edn) (河北大学工程学报), 2009, 26(4): 59–61 (in Chinese with English abstract) [11]Liu Y(刘莹), Zhang M-C(张孟臣). Study on root trait related yield in soybean growing in summer and QTL mapping: root morphology and root traits related to drought tolerance at vegetation stage in soybean. J Hebei Univ Eng (Nat Sci Edn)(河北大学工程学报), 2010, 27(1): 65–69 (in Chinese with English abstract) [12]Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerant germplasm at seeding stage and QTL mapping of related root traits in soybean. J Genet Genomics (遗传学报), 2005, 32(8): 855–863 (in Chinese with English abstract) [13]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509 [14]Mian M A R, Ashley D A, Boerma H R. An additional QTL for water use efficiency in soybean. Crop Sci, 1998, 38: 390–393 [15]Mian M A R, Bailey M A, Ashley D A. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci, 1996, 36: 1252–1257 [16]Yang J-P(杨剑平), Chen X-Z(陈学珍), Wang W-P(王文平), Li Y(李杨). The establishment of the simulated system of drought for soybean in laboratory. Chin Agric Sci Bull (中国农学通报), 2003, 19(3): 65–68 (in Chinese with English abstract) [17]Li T(李甜), Zhu Y-S(朱延姝), Zhang X-P(张晓萍), Gao Y(高杨), Zheng Y-Z(郑易之). The discussion for physiological in different drought-resistance of soybean. J Northeast Norm Univ (Nat Sci Edn)(东北师范大学学报·自然科学版), 1999, (2): 123–124 (in Chinese) [18]Li G-Q(李贵全), Du W-J(杜维俊), Kong Z-S(孔照胜). Study on the relationships between drought-resistance and physiological and ecological indicators in different soybean varieties. J Shanxi Agric Univ (山西农业大学学报), 2000, 20(3): 197–200 (in Chinese with English abstract) [19]Xie H(谢皓), Zhu S-M(朱世明), Bao Z-J(包子敬), Wang W-P(王文平), Xing B-S(兴百顺), Bai B-L(白宝良), Chen X-Z(陈学珍). Identification and selection of soybean drought-resistant variety on the drought intimidation. J Beijing Univ Agric (北京农学院学报), 2008, 23(3): 74.–81 (in Chinese with English abstract) [20]Xu H-X(许海霞), Li W(李伟), Cheng X-Y(程西永), Dong Z-D(董中东), Li Y(李阳), Cui D-Q(崔党群). Drought stress effect on agronomic of wheat. Chin Agric Sci Bull (中国农学通报), 2008, 24(3): 125–129 (in Chinese with English abstract) [21]Sun Y-B(孙曰波), Zhao C-K(赵从凯). Progress for Root Research Methods (根系研究方法进展). Jinan: Higher Vocational Education of Weifang, 2009. p 1 [22]Zhao J-Y(赵晶云). Analysis of Drought Resistance in Sprouting Soybean by AFLP and QTL Mapping. MS Dissertations of Shanxi Agricultural University, 2003. pp 1–55 [23]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Liu C-Y(刘春燕), Li W-F(李文福), Gao Y-L(高运来), Chen Q-S(陈庆山), Hu G-H(胡国华). QTL analysis of seed and pod traits in soybean. Mol Plant Breed (分子植物育种), 2008, 6(6): 1–10 (in Chinese with English abstract) [24]Van Berloo R. GGT: Software for the display of graphical genotypes. J Hered, 1999, 90: 328–329 [25]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642–1650 [26]SAS Institute Inc. SAS/STAT Software: Changes and Enhancements though Release 6.12. Cary, North Carolina: SAS Institute Inc. 1997 [27]Zheng T-Q(郑天清), Xu J-L(徐建龙), Fu B-Y(傅彬英), Gao Y-M(高用明), Veruka S, Lafitte R, Zhai H-Q(翟虎渠), Wan J-M(万建民), Li Z-K(黎志康). Application of genetic hitch-hiking and ANOVA in identification of loci for drought tolerance in populations of rice from directional selection. Acta Agron Sin (作物学报), 2007, 33(5): 799–804 (in Chinese with English abstract) [28]Jiang H-W(蒋洪蔚), Li C-D(李灿东), Liu C-Y(刘春燕), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Li W-F(李文福), Gao Y-L(高运来), Chen Q-S(陈庆山), Hu G-H(胡国华). Genotype analysis and QTL mapping for tolerance to low temperature in germination by introgression lines in soybean. Acta Agron Sin (作物学报), 2009, 35(7): 1268–1273 (in Chinese with English abstract) [29]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Liu C-Y(刘春燕), Chen Q-S(陈庆山), Hu G-H(胡国华). Genotype and QTL analysis of drought tolerance loci for directional population in soybean. Chin Agric Sci Bull (中国油料作物学报), 2009, 25(3): 285–292 (in Chinese with English abstract) [30]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33–52 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|