欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 603-611.doi: 10.3724/SP.J.1006.2011.00603

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆耐旱选择群体QTL定位

李灿东1,2,3,蒋洪蔚1,刘春燕1,郭泰2,王志新2,吴秀红2,郑伟2,邱鹏程3,张闻博3,宋英博2,栾奕娜5,陈庆山3,*,胡国华1,4,*   

  1. 1黑龙江省农垦科研育种中心,黑龙江哈尔滨 150090;2黑龙江省农科院佳木斯分院,黑龙江佳木斯 154007;3东北农业大学农学院,黑龙江哈尔滨 150030;4国家大豆工程技术研究中心,黑龙江哈尔滨 150050;5黑龙江农业职业技术学院,黑龙江佳木斯 154007
  • 收稿日期:2010-09-20 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 陈庆山, E-mail: qshchen@126.com, 0451-55191945; 胡国华, E-mail: Hugh757@vip.163.com, 0451-55199475
  • 基金资助:

    本研究由转基因专项大豆导入系构建及有利隐蔽基因挖掘(2009ZX08009-013B),国家公益性行业(农业)科研专项(200903003)和引进国际先进农业科学技术计划(948计划)项目(2006G01)资助。

QTL Identification of Drought Tolerance to Soybean in Selection Population

LI Can-Dong1,2,3,JIANG Hong-Wei1,LIU Chun-Yan1,GUO Tai2,WANG Zhi-Xin2,WU Xiu-Hong2,ZHENG Wei2,QIU Peng-Cheng3,ZHANG Wen-Bo3,SONG Ying-Bo2,LUAN Yi-Na5,CHEN Qing-Shan3,*,HU Guo-Hua1,4,*   

  1. 1 Land Reclamation Research & Breeding Centre of Heilongjiang, Harbin 150090, China; 2 Jiamusi branch institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China; 3 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 4The National Research Center of Soybean Engineering and Technology, Harbin 150050, China; 5 Heilongjiang Agricultural Vocational and Technical College, Jiamusi 154007, China
  • Received:2010-09-20 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 陈庆山, E-mail: qshchen@126.com, 0451-55191945; 胡国华, E-mail: Hugh757@vip.163.com, 0451-55199475

摘要: 以红丰11为轮回亲本、Clark为供体亲本构建回交群体进行耐旱性鉴定,对获得选择群体进行全基因组SSR标记扫描,计算供体基因型导入频率,利用卡方测验检测偏分离SSR位点,并结合GGT软件对各连锁群分析, 对5个耐旱相关性状进行QTL定位。以卡方测验检测到23个SSR偏分离位点(超导入),分布于10条连锁群。方差分析表明,8个叶片持水能力QTL分布于A1、B1、C2、E、L和N连锁群;9个根长QTL分布于C2、F、G和I连锁群;11个根干重QTL分布于A2、B1、B2、E、F、K、L、M和O连锁群;12个产量QTL分布于B1、D1a、E、F、G、I、L、M和O连锁群;7个生物量QTL分布于E、F、G、K、L和N连锁群。在E连锁群的Sat_136位点,对于叶片持水能力、根干重、产量和生物量具有一致性;在F连锁群的GMRUBP位点,对于根干重和生物量具有一致性,Satt586位点,对于根长、根干重和产量具有一致性;在K连锁群的Satt167位点,对于根干重和生物量具有一致性,SOYPRP1位点,对于根长和生物量具有一致性;在L连锁群的Satt398位点,对于根长和产量具有一致性,Satt694位点对于叶片持水能力和生物量具有一致性;在M连锁群的GMSL514位点,对于根干重和产量具有一致性;以上位点均与卡方测验检测到的“超导入”位点具有一致性。经过供体等位基因卡方测验和耐旱QTL定位,共检测到33个QTL,其中有17个同时被检测到。这些位点可能是控制大豆耐旱性的重要位点。

关键词: 大豆, 耐旱性, QTL分析

Abstract: A primary backcross introgression of soybean population was constructed by using Hongfeng 11 as recurrent parent and Clark as donor parent. After screening under drought stress, the genotypes of selective population were obtained with the whole genome SSR markers, and the frequency of donor genes segments were analyzed. QTLs of five drought-tolerance traits were mapped by Chi-testcombined GGT linkage group analysis. In total, 23 SSR excessive introgression loci on 10 chromosomes were detected with χ2test. The QTL identification was conducted by one-way ANOVA (for single marker analysis, P<0.01). Eight QTLs of RWC (relative water content) were located on A1, B1, C2, E, L, and N linkage groups, nine QTLs of RRL (relative root length) on C2, F, G, and I linkage groups, 11 QTLs of RRW (relative root dry weight) on A2, B1, B2, E, F, K, L, M, and O linkage groups, 12 QTLs of RGY (relative grain yield) on B1, D1a, E, F, G, I, L, M, and O linkage groups and seven QTLs of RMB (relative microbial biomass) on E, F, G, K, L, and N linkage groups. The QTL at Sat_136 on E linkage group was identical for RWC, RRW, RGY, and RMB, and QTL at GMRUBP on F linkage group for RRW and RMB, QTL at Satt586 on F linkage group for RRL, RRW, and RGY, QTL at Satt167 on K linkage group for RRW and RMB, QTL at SOYPRP1 on K linkage group for RRL and RMB, QTL at Satt398 on L linkage group for RRL and RGY, QTL at Satt694 on L linkage group for RWC and RMB, QTL at GMSL514 on L linkage group for RRW and RGY. All above QTLs were coincident with those detected by excessive introgression of χ2 test. Thirty-three QTLs were mapped by χ2 test or one-way ANOVA, and among them 17 QTLs were detected by both methods. So these QTLs should be essential for drought tolerance. The results provide a foundation for fine mapping, cloning and molecular breeding of favorable genes related with drought tolerance.

Key words: Soybean, Drought tolerance, QTL identification

[1]Li Y-Y(李原园), Li Y-N(李英能), Su R-Q(苏人琼). Water crisis in agricultural sustainable development and its countermeasures in China. Res Agric Mod (农业现代化研究), 1997, (3): 52–54 (in Chinese with English abstract)
[2]Shan L(山仑), Chen G-L(陈国良). Theory and Practice for Droughty Region Agriculture of Loess Plateau (黄土高原旱地农业的理论与实践). Beijing: Science Press, 1993. pp 125–129 (in Chinese)
[3]Liu X-Y(刘学义). Discuss on evaluating method to drought-resistance of soybean. Oil Crops China (中国油料), 1986, (4): 23–26 (in Chinese with English abstract)
[4]Sloane R J, Patterson R P, Carter T E. Field drought tolerance of soybean plant introduction. Crop Sci, 1990, 30: 118–123
[5]Liu F L, Andersen M N, Jacobsen S E. Stomatal control and water use efficiency of soybean (Glycine max Merrill) during progressive soil drying. Environ Exp Bot, 2004, 54: 1–8
[6]Hudak C M, Patterson R P. Vegetative growth analysis of a drought resistant soybean plant introduction. Crop Sci, 1995, 35: 464–471
[7]Garcia A, Gonzalez M C. Morphological markers for the early selection of drought tolerant rice varieties. Cultivate Trop, 1997, 18: 47–50
[8]Sambrook J, Russell D W. Huang P-T(黄培堂) trans. Molecular Cloning: A Laboratory Manual, 3rd edn (分子克隆实验指南·第3版). Beijing: Science Press, 2002. pp 363–365 (in Chinese)
[9]He C-Y(贺超英). Construction of Soybean Genetic Map by SSR and Its Application in Cloning of Disease-Resistance Genes. PhD Dissertations of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. 2001. pp 35–38
[10]Liu Y(刘莹), Cai Q-M(蔡祈明). Root morphology and root traits related to drought tolerance at vegetation stage in soybean. J Hebei Univ Eng (Nat Sci Edn) (河北大学工程学报), 2009, 26(4): 59–61 (in Chinese with English abstract)
[11]Liu Y(刘莹), Zhang M-C(张孟臣). Study on root trait related yield in soybean growing in summer and QTL mapping: root morphology and root traits related to drought tolerance at vegetation stage in soybean. J Hebei Univ Eng (Nat Sci Edn)(河北大学工程学报), 2010, 27(1): 65–69 (in Chinese with English abstract)
[12]Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerant germplasm at seeding stage and QTL mapping of related root traits in soybean. J Genet Genomics (遗传学报), 2005, 32(8): 855–863 (in Chinese with English abstract)
[13]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[14]Mian M A R, Ashley D A, Boerma H R. An additional QTL for water use efficiency in soybean. Crop Sci, 1998, 38: 390–393
[15]Mian M A R, Bailey M A, Ashley D A. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci, 1996, 36: 1252–1257
[16]Yang J-P(杨剑平), Chen X-Z(陈学珍), Wang W-P(王文平), Li Y(李杨). The establishment of the simulated system of drought for soybean in laboratory. Chin Agric Sci Bull (中国农学通报), 2003, 19(3): 65–68 (in Chinese with English abstract)
[17]Li T(李甜), Zhu Y-S(朱延姝), Zhang X-P(张晓萍), Gao Y(高杨), Zheng Y-Z(郑易之). The discussion for physiological in different drought-resistance of soybean. J Northeast Norm Univ (Nat Sci Edn)(东北师范大学学报·自然科学版), 1999, (2): 123–124 (in Chinese)
[18]Li G-Q(李贵全), Du W-J(杜维俊), Kong Z-S(孔照胜). Study on the relationships between drought-resistance and physiological and ecological indicators in different soybean varieties. J Shanxi Agric Univ (山西农业大学学报), 2000, 20(3): 197–200 (in Chinese with English abstract)
[19]Xie H(谢皓), Zhu S-M(朱世明), Bao Z-J(包子敬), Wang W-P(王文平), Xing B-S(兴百顺), Bai B-L(白宝良), Chen X-Z(陈学珍). Identification and selection of soybean drought-resistant variety on the drought intimidation. J Beijing Univ Agric (北京农学院学报), 2008, 23(3): 74.–81 (in Chinese with English abstract)
[20]Xu H-X(许海霞), Li W(李伟), Cheng X-Y(程西永), Dong Z-D(董中东), Li Y(李阳), Cui D-Q(崔党群). Drought stress effect on agronomic of wheat. Chin Agric Sci Bull (中国农学通报), 2008, 24(3): 125–129 (in Chinese with English abstract)
[21]Sun Y-B(孙曰波), Zhao C-K(赵从凯). Progress for Root Research Methods (根系研究方法进展). Jinan: Higher Vocational Education of Weifang, 2009. p 1
[22]Zhao J-Y(赵晶云). Analysis of Drought Resistance in Sprouting Soybean by AFLP and QTL Mapping. MS Dissertations of Shanxi Agricultural University, 2003. pp 1–55
[23]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Liu C-Y(刘春燕), Li W-F(李文福), Gao Y-L(高运来), Chen Q-S(陈庆山), Hu G-H(胡国华). QTL analysis of seed and pod traits in soybean. Mol Plant Breed (分子植物育种), 2008, 6(6): 1–10 (in Chinese with English abstract)
[24]Van Berloo R. GGT: Software for the display of graphical genotypes. J Hered, 1999, 90: 328–329
[25]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642–1650
[26]SAS Institute Inc. SAS/STAT Software: Changes and Enhancements though Release 6.12. Cary, North Carolina: SAS Institute Inc. 1997
[27]Zheng T-Q(郑天清), Xu J-L(徐建龙), Fu B-Y(傅彬英), Gao Y-M(高用明), Veruka S, Lafitte R, Zhai H-Q(翟虎渠), Wan J-M(万建民), Li Z-K(黎志康). Application of genetic hitch-hiking and ANOVA in identification of loci for drought tolerance in populations of rice from directional selection. Acta Agron Sin (作物学报), 2007, 33(5): 799–804 (in Chinese with English abstract)
[28]Jiang H-W(蒋洪蔚), Li C-D(李灿东), Liu C-Y(刘春燕), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Li W-F(李文福), Gao Y-L(高运来), Chen Q-S(陈庆山), Hu G-H(胡国华). Genotype analysis and QTL mapping for tolerance to low temperature in germination by introgression lines in soybean. Acta Agron Sin (作物学报), 2009, 35(7): 1268–1273 (in Chinese with English abstract)
[29]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Liu C-Y(刘春燕), Chen Q-S(陈庆山), Hu G-H(胡国华). Genotype and QTL analysis of drought tolerance loci for directional population in soybean. Chin Agric Sci Bull (中国油料作物学报), 2009, 25(3): 285–292 (in Chinese with English abstract)
[30]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33–52
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!