欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 629-634.doi: 10.3724/SP.J.1006.2011.00629

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻颖壳和浆片异常突变体ahl的基因定位

王增**,李云峰**,马娇,任德勇,王德仲,游小庆,桑贤春,何光华*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室,重庆400716
  • 收稿日期:2010-09-17 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 何光华, E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071390),重庆市杰出青年基金项目(2008BA1033)和重庆市良种创新工程项目(CSTC,2010AA1013)资助。

Gene Mapping of a Novel Mutant ahl in Rice

WANG Zeng**,LI Yun-Feng**,MA Jiao,REN De-Yong,WANG De-Zhong,YOU Xiao-Qing,SANG Xian-Chun,HE Guang-Hua*   

  1. Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400716, China
  • Received:2010-09-17 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 何光华, E-mail: hegh@swu.edu.cn

摘要: 研究水稻花发育基因对于水稻相关性状的分子育种具有十分重要的意义。本研究报道一个水稻颖壳和浆片异常突变体ahl (abnormal hull and lodicule),来源于优良恢复系缙恢10号的EMS诱变群体。该突变体内外稃变小并发生严重扭曲,浆片顶端伸长。内外稃异常导致灌浆后米粒变小、畸形,千粒重下降。该性状遗传稳定,受一对隐性基因控制,利用群体分离分析法(bulked segregation analysis,BSA)将AHL基因定位在第2染色体上的SSR标记RM14153与RM14167之间,遗传距离分别为1.19 cM和1.34 cM,物理距离为226 kb。研究结果为AHL基因的图位克隆和功能研究奠定了基础。

关键词: 水稻, 颖壳和浆片异常突变体, 遗传分析, 基因定位

Abstract: Theresearch on rice flower development gene is very important in molecular breeding of rice for related traits. A rice flower mutant abnormal hull and lodicule (ahl) was identified from Jinhui 10 (Oryza sativa L. ssp. indica) treated by EMS. In ahl mutant, lemma and palea minished and significantly twisted along with the apparently elongated apical lodicules. This minished lemma and palea led toabnormal kernelsafter grain filling, meanwhile, the 1000-grain weight decreased. The trait wassteadily inherited, and controlled by a pair of recessive gene.Using bulked segregation analysis method AHL was restricted between SSR markers RM14153 and RM14167, with genetic distances of 1.34 cM and 1.19 cM respectively, which covered an approximate 226 kb region on the chromosome 2. The result is useful for further map-based cloning and functional analysis of AHL gene.

Key words: Rice (Oryza sativa L.), abnormal hull and lodicule, Genetic analysis, Gene mapping

[1]Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31–37
[2]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203–209
[3]Bowman J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell-types late in flower development. Plant Cell, 1991, 3: 749–758
[4]Wolfe K H, Gouy M, Yang Y W, Sharp P M, Li W H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA, 1989, 86: 6201–6205
[5]Kang H G, Jeon J S, Lee S, An G. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol, 1998, 38: 1021–1029
[6]Lee S, Jeon J S, An K, Moon Y H, Lee S, Chung Y Y, An G. Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta, 2003, 217: 904–911
[7]Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1, DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718
[8]Xiao H, Wang Y, Liu D F, Wang W M, Li X B, Zhao X F, Xu J C, Zhai W X, Zhu L H. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol, 2003, 52: 957−966
[9]Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28
[10]Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe M E. Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod, 2002, 15: 113–122
[11]Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol, 2000, 41: 710–718
[12]Greco R, Stagi L, Colombo L, Angenent G C, Sari-Gorla M, Pè ME. MADS-box genes expressed in developing inflorescences of rice and sorghum. Mol Gen Genet, 1997, 253: 615–623
[13]Rogers S O, Bendich AJ. Extraction of DNA from plant tissues. In: Gelvin S B, Schilperoort R A, eds. Plant Molecular Biology Manual. Boston, M A: Kluwer Academic Publishers, 1988. pp A6: 1–10
[14]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)
[15]Luo Y-Z(罗远章), Zhao F-M(赵芳明), Sang X-C(桑贤春), Ling Y-H(凌英华), Yang Z-L(杨正林), He G-H(何光华). Genetic analysis and gene mapping of a novel rolled leaf mutant rl12(t) in rice. Acta Agron Sin (作物学报), 2009, 35(11): 1967−1972 (in Chinese with English abstract)
[16]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length poly-morphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 259: 297−607
[17]Kim C, Jeong D H, An G. Molecular cloning and characterization of OsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa. Plant Sci, 2000, 152: 17–26
[18]Agrawal G K, Abe K, Yamazaki M, Miyao A, Hirochika H. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol, 2005, 59: 125–135
[19]Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X, Wilson Z A, Qian Q, Zhang D B. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol, 2009, 149: 235–244
[20]Luo Q, Zhou K D, Zhao X F, Zeng Q C, Xia H G, Zhai W X, Xu J C, Wu X J, Yang H S, Zhu L H. Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta, 2005, 221: 222–230
[21]Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. MOSAIC FLORAL ORGANS1, an AGL6-Like MADS Box Gene, Regulates floral organ identity and meristem fate in rice. Plant Cell, 2009, 21: 3008–3025
[22]Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789–801
[23]Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol, 2000, 41: 710–718
[24]Moon S, Jung K H, Lee D E, Lee DY, Lee J, An K, Kang H G, An G. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147–152
[25]Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics, 2003, 165: 2301–2305
[26]Franks R G, Liu Z C, Fischer R L. SEUSS and LEUNIG regulate cell proliferation, vascular development and organ polarity in Arabidopsis petals. Planta, 2006, 224: 801–811
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!