欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 943-954.doi: 10.3724/SP.J.1006.2011.00943

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中国小麦品种对白粉病的抗性反应与抗病基因检测

李洪杰*,王晓鸣,宋凤景,伍翠平,武小菲,张宁,周阳,张学勇   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081
  • 收稿日期:2010-11-29 修回日期:2011-03-08 出版日期:2011-06-12 网络出版日期:2011-03-24
  • 通讯作者: 李洪杰: E-mail: hongjie@caas.net.cn
  • 基金资助:

    本研究由中央级公益性科研院所基本科研业务费专项(20105)、科技部转基因重大专项(2009ZX08002-006B)、国家重点基础研究计划(973计划)项目(2010CB125900)和国家小麦产业技术体系专项资助。

Response to Powdery Mildew and Detection of Resistance Genes in Wheat Cultivars from China

LI Hong-Jie*,WANG Xiao-Ming,SONG Feng-Jing,WU Cui-Ping,WU Xiao-Fei,ZHANG Ning,ZHOU Yang,ZHANG Xue-Yong   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2010-11-29 Revised:2011-03-08 Published:2011-06-12 Published online:2011-03-24
  • Contact: 李洪杰: E-mail: hongjie@caas.net.cn

摘要: 利用来自不同生态区的8个白粉菌菌株对20世纪80年代以来国家审定(认定)品种、近期参加国家区域试验的品系和核心种质等小麦材料进行抗病性评价,同时利用与Pm4aPm8Pm21基因连锁的分子标记检测了相关抗病基因的存在。在148个国家审定品种中有16.9%的品种能够抗多个菌株,其中大多是近10年选育的品种。不同年代审定的品种中感病品种的频率均超过50%。各个小麦生产区抗病品种的频率高低与该地区白粉病的严重性和育种的关注程度有一定关系。在1 160份小麦核心种质中抗E09菌株的地方品种和育成品种的比例只有3.4%和4.2%。西南冬麦区和新疆冬麦区入选的品种抗病频率较高,华南冬麦区、东北春麦区和北方春麦区没有发现抗E09菌株的品种。多菌株鉴定结果表明,263份微核心种质中33.7%的品种表现抗病性,其中大多数品种能够抗1~2个菌株,因此在核心种质的利用中应注意选用抗性强的品种作为轮回亲本,同时有必要构建抗白粉病的应用核心种质,以提高核心种质的利用效果。根据抗病基因分子标记检测结果,我国小麦品种有43.2%含有Pm8基因,该基因在区域试验参试品种中的频率也很高,特别是在黄淮麦区培育的品种中频率仍高达50%;Pm4aPm21基因主要出现在长江流域培育的品种中。有些抗性突出的品种可能含有其他抗病基因。

关键词: 小麦, 抗病性, 白粉病, 抗病基因, Pm8, Pm4, Pm21

Abstract: Wheat powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici E.O. Speer is one of the major epidemic diseases threatening production of wheat (Triticum aestivum L.) in China. It is necessary to establish information on resistance to the disease in wheat cultivars and germplasm lines for parental selection in breeding, deployment of resistant germplasm, and application of resistant cultivars for controlling the disease. In this study, reactions to eight isolates of B. graminis (DC.) f. sp. tritici E.O. Speer were tested in commercial wheat cultivars, wheat lines involved in the national yield trials, and core collections. The presence of genes Pm4a, Pm8, and Pm21 for resistance to powdery mildew was detected using the gene-specific markers. Among 148 commercial wheat cultivars released since the 1980s, 16.9% exhibited resistance to multiple isolates, most of which were released in the 2000s. Over 50% of the cultivars released in different decades were susceptible to all the isolates tested. The frequencies of resistant cultivars from different wheat producing regions seemed to be associated with the significance of powdery mildew epidemic in a given region. Out of 1160 entries in the core collection, the proportions of entries resistant to isolate E09 were 3.4% and 4.2% in the landrace and improved cultivars, respectively. The Southwestern Autumn-Sown Spring Wheat Zone and the Xinjiang Winter-Spring Wheat Zone had higher percentages of E09-resistant cultivars than other wheat zones. None of the cultivar from the Southern Autumn-Sown Spring Wheat Zone, Northern Winter Wheat Zone, and Northern Spring Wheat Zone was resistant. The results of multiple-isolate test demonstrated that 33.7% were resistant among the 263 mini-core collection entries, most of which were resistant to one or two isolates. This indicates that there is a need to select resistant entries as recurrent parents for efficient use of existing core collection and to construct applied core collection for resistance to powdery mildew. Using the markers specific for resistance genes, the results of molecular detection demonstrated that 43.2% of the commercial cultivars contained gene Pm8. This gene was detected in the wheat lines involved in the national wheat yield trails at a high frequency. Genes Pm4a and Pm21 were detected mainly in the wheat lines or cultivars that were developed in the Yangtze River region. Some cultivars highly resistant to powdery mildew may possess other resistance genes that warrant further determination.

Key words: Wheat, Disease resistance, Powdery mildew, Resistance gene, Pm8, Pm4, Pm21

[1]Zhuang Q-S(庄巧生). Wheat Improvement and Pedigree Analysis in China (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)
[2]Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531–535 (in Chinese with English abstract)
[3]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H., Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457–463
[4]Villareal R L, Toro E D, Mujeeb-Kazi A, Rajaram S. The 1B/1R chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breed, 1995, 114: 497–500
[5]Villareal R L, Bañuelos O, Mujeeb-Kazi A, Rajaram S. Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica, 1998, 103: 195–202
[6]Rabinovich S V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323–340
[7]Zhuang Q S, Li Z S. Present status of wheat breeding and related genetic study in China. Wheat Inf Serv, 1993, 76: 1–15
[8]Qi L-L(齐莉莉), Chen P-D(陈佩度), Liu D-J(刘大钧), Zhou B(周波), Zhang S-Z(张守中), Sheng B-Q(盛宝钦), Xiang Q-J(向齐君), Duan X-Y(段霞瑜), Zhou Y-L(周益林). The gene Pm21: A new source for resistance to wheat powdery mildew. Acta Agron Sin (作物学报), 1995, 21(3): 257–262 (in Chinese with English abstract)
[9]Li G P, Chen P D, Zhang S Z, Wang X E, He Z H, Zhang Y, Zhao H, Huang H Y, Zhou X C. Effect of the 6VS.6VL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007, 155: 305–313
[10]Dong Y-C(董玉琛), Cao Y-S(曹永生), Zhang X-Y(张学勇), Liu S-C(刘三才), Wang L-F(王兰芬), You G-X(游光侠), Pang B-S(庞斌双), Li L-H(李立会), Jia J-Z(贾继增). Establishment of candidate core collections in Chinese common wheat germplasm. J Crop Genet Resour (植物遗传资源学报), 2003, 4(1): 1–8 (in Chinese with English abstract)
[11]Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Wang L-F(王兰芬), You G-X(游光霞), Zhang H-N(张洪娜), Gai H-M(盖红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin Sci Bull (科学通报), 2008, 53(8): 908–915 (in Chinese)
[12]Wu Q-A(吴全安). Methods Used in the Evaluation of Pest Resistant Potentialities in Food Crop Germplasm Resources (粮食作物种质资源抗病虫鉴定方法). Beijing: China Agriculture Press, 1991 (in Chinese)
[13]Chai J F, Zhou R H, Jia J Z, Liu X. Development and application of a new codominant PCR marker for detecting 1BL.1RS wheat-rye chromosome translocations. Plant Breed, 2006, 125: 302–304
[14]Ma Z Q, Wei J B, Cheng S H. PCR-based makers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet, 2004, 109: 140–145
[15]Song W, Xie C J, Du J K, Xie H, Liu Q, Ni Z F, Yang T, Sun Q X, Liu Z Y. A “one-molecular-for-two-genes” approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed, 2009, 23: 357–363
[16]Zhang X-Y(张学勇), Pang B-S(庞斌双), You G-X(游光霞), Wang L-F(王兰芬), Jia J-Z(贾继増), Dong Y-C(董玉琛). Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.) germplasms. Sci Agric Sin (中国农业科学), 2002, 35(11): 1302–1310 (in Chinese with English abstract)
[17]Graybosch R A, Peterson C J, Hansen L E, Worral D, Shelton D R, Lukaszewski A J. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocations. J Cereal Sci, 1993, 17: 95–106
[18]Graybosch RA. Uneasy unions: quality effects of rye chromatin transfer to wheat. J Cereal Sci, 2001, 33: 3−16
[19]Li H J, Conner R L, Liu Z Y, Li Y W, Chen Y, Zhou Y L, Duan X Y, Shen T M, Chen Q, Graf R J, Jia X. Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Plant Dis, 2007, 91: 368–374
[20]Li H J, Conner R L, McCallum B D, Chen X M, Su H, Wen Z Y, Chen Q, Jia X. Resistance of Tangmai 4 wheat to powdery mildew, stem rust, leaf rust, and stripe rust and its chromosomal composition. Can J Plant Sci, 2004, 84: 1015–1023
[21]Hu T-Z(胡铁柱), Li H-J(李洪杰), Xie C-J(解超杰), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular mapping and chromosomal location of the powdery mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron Sin (作物学报), 2008, 34(7): 1193−1198 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!