欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 955-964.doi: 10.3724/SP.J.1006.2011.00955

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻半矮秆基因iga-1的鉴定及精细定位

郭涛,霍兴**,饶得花,刘永柱,张建国,陈志强,王慧*   

  1. 华南农业大学 / 国家植物航天育种工程技术研究中心,广东广州510642
  • 收稿日期:2010-10-27 修回日期:2010-03-06 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 基金资助:

    本研究由国家自然科学基金项目(30771313)和国家科技支撑计划项目(2008BAD97B02)资助。

Identification and Fine Mapping of a Semidwarf Gene iga-1 in Rice

GUO Tao,HUO Xing**,RAO De-Hua,LIU Yong-Zhu,ZHANG Jian-Guo,CHEN Zhi-Qiang,WANG Hui*   

  1. South China Agricultural University, National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, China
  • Received:2010-10-27 Revised:2010-03-06 Published:2011-06-12 Published online:2011-04-12

摘要: 在前期通过空间诱变获得半矮秆隐性突变基因iga-1的基础上,进一步对iga-1进行鉴定。农艺性状调查表明携带iga-1的矮秆株系CHA-2、CHA-2N与原种特籼占13相比存在明显变异。节间长度测量显示CHA-2、CHA-2N节间比例正常,属dn型。外源GA3处理、内源GA3测定和α-淀粉酶活性检测揭示iga-1与GA3调控无关。利用CHA-2与粳稻品种02428杂交获得的F2群体将iga-1定位在水稻第5染色体两个InDel标记DL18和DL19间32.01 kb的物理距离内。该区域有5个阅读框架,其中包括赤霉素信号传导调控基因D1。序列分析表明CHA-2、CHA-2N和特籼占13在D1位点上基因组序列不存在差异,推测D1并非iga-1的候选基因。比较水稻第5染色体上其他矮秆基因发现iga-1可能与半矮秆基因sd-7来自同一位点。

关键词: 水稻, 半矮秆突变体, iga-1基因, 精细定位

Abstract: A semidwarf gene iga-1 of rice (Oryza sativa L.) by mutagenesis of outer space treatment from Texianzhan 13 was identified. The dwarf lines CHA-2 and CHA-2N which carried iga-1 showed great variation in agronomic traits. On the basis of the internode length of CHA-2 and CHA-2N, the mutant belongs to the dn type of dwarfing. GA3 treatment, endo-GA3 measurement and α-amylase activity analysis in endosperm showed that iga-1 is independent of gibberellin acid. Using a large F2 population derived from a cross between the CHA-2 and an japonica rice variety, 02428, the iga-1 gene was fine mapped into a 32.01 kb physical distance between two InDel markers, DL18 and DL19 on chromosome 5, where five open reading frames were predicted, one of which was the rice gibberellin-insensitive dwarf mutant gene D1. Sequence analysis showed that no variation in D1 locus was detected among CHA-2, CHA-2N and Texianzhan 13. Thus, D1 can not be the candidate gene of iga-1. Comparing the other dwarf genes on chromosome 5 showed that iga-1 is possibly allelic to the semidwarf gene sd-7.

Key words: Rice, Semidwarf mutant, iga-1, Fine mapping

[1]Silverstone A L, Sun T. Gibberellins and the green revolution. Trends Plant Sci, 2000, 5: 1-2
[2]Parnell F R, Rangswani G N, Ayyanggar C R S. The inheritance of characters in rice. Agric India Bot Ser, 1922, 11: 185-208
[3]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 17: 1-18
[4]Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. Genealogy of the “Green Revolution” gene in rice. Genes Genet Syst, 2005, 80: 1-6
[5]Chang T T. Genetics and breeding. In: Westport. Rice: Production and Utilization. Connecticut: AVI Press, 1980. pp 146-187
[6]Wilhelm R. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531
[7]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54: 137-164
[8]Mitsunaga S, Tashiro T, Yamaguchi J. Identification and characterization of gibberellins-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet, 1994, 87: 705-712
[9]Hedden P, Phillips A L. Gibberellins metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530
[10]Tomoaki S, Koutarou M, Hironori I, Tomoko T, Miyako U T, Kanako I, Masatomo K, Ganesh K A, Shin T, Kiyomi A, Akio M, Hirohiko H, Hidemi K, Motoyuki A, Makoto M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642-1653
[11]Grennan A K. Gibberellin metabolism enzymes in rice. Plant Physiol, 2006, 141: 524-526
[12]Sun T, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 2004, 55: 197-223
[13]Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251
[14]Gomi K, Matsuoka M. Gibberellin signalling pathway. Curr Opin Plant Biol, 2003, 6:489-493
[15]Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA, 1999, 96: 7575-7580
[16]Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140-2155
[17]Hartweck L M, Olszewski N E. Rice gibberellin insensitive Dwarf1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell, 2006, 18: 278-82
[18]Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626-634
[19]Rao D-H(饶得花), Guo T(郭涛), Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of a semidwarf mutant in indica rice and the response to gibberellin. J South China Agric Univ (华南农业大学学报), 2009, 30(1): 19-22 (in Chinese with English abstract)
[20]ang H (王慧), Liu Y-Z (刘永柱), Zhang J-G (张建国), Chen Z-Q (陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci (中国水稻科学), 2004, 18(5): 391-395 (in Chinese with English abstract)
[21]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107-114
[22]Xie J(谢君), Zhang Y-Z(张义正). Determination of plant intrinsic hormones by reversed-phase high-performance liquid chromatography. J Instrumental Anal (分析测试学报), 2001, 20(1): 60-62 (in Chinese with English abstract)
[23]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4325
[24]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205
[25]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[26]Lin H-X(林鸿宣), Xiong Z-M(熊振民), Min S-K(闵绍楷), Yu G-L(俞桂林), Zhu X-D(朱旭东). The responses of semidwarf rice lines to gibberellic acid. Chin J Rice Sci (中国水稻科学), 1991, 5(1): 13-18 (in Chinese with English abstract)
[27]Song P(宋平), Cao X-Z(曹显祖), Wu Y-H(吴永宏), Zhu X-H(朱晓红), Liang J-S(梁建生). Regulation of gibberell in-binding proteins on dwarfism of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 1996, 22(6): 652-656 (in Chinese with English abstract)
[28]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘Green revolution’. Breed Sci, 2002, 52: 143-150
[29]Gubler F, Kalla R, Roberts J K, Jacobsen J V. Gibberellin regulated expression of a myb gene in barley aleurone cells: Evidence for Myb transactivation of a high-pl α-amylase gene promoter. Plant Cell, 1995, 7: 1879-1891
[30]Zhu L-H(朱立宏), Gu M-H(顾铭洪), Xue Y-L(薛元龙). Inheritance of dwarf stature in Oryza sativa L. subsp. hsien and its utilization. J Nanjing Agric Univ (南京农业大学学报), 1980, 2: 1-7 (in Chinese with English abstract)
[31]Chang T T, Zuro C, Marciano-Romena A, Loresto G C. Semidwarf in rice germplasm collections and their potentials in rice improvement. Phytobreedon, 1985, 1: 1-42
[32]Foster K W, Rutger J N. Inheritance of semidwarfism in rice. Oryza sativa L. Genetics, 1978, 88: 559-574
[33]Mackill D J, Rutger J N. The inheritance of induced-mutant semidwarfing gene in rice. J Hered, 1979, 70: 335-341
[34]McKenzie K S, Rutger J N. A new semidwarf mutants in a large grain rice cultivar. Crop Sci, 1986, 26: 81-84
[35]Xu J-L(徐建龙), Li C-S(李春寿), Wang J-M (王俊敏), Luo R-T (骆荣挺), Zhang M-X (张铭铣). Screening and identification of tillering dwarf mutant of rice induced by space environment. Acta Agric Nucl Sin (核农学报), 2003, 17(2): 90-94 (in Chinese with English abstract)
[36]Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591-606
[37]Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002, 32: 495-508
[38]Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in Brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790
[39]Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17: 2243-54
[40]Kotaro M, Masakazu A, Hidemi K, Atsushi Y, Makoto M, Steven E J, Motoyuki A. A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci USA, 2009, 106: 11218-11223
[41]Tsai K H. An induced dwarfing gene, sd-7(t), obtained in Taichung 65. Rice Genet Newslr, 1989, 6: 99-101
[42]Tsai K H. Tight linkage of gene sd-7(t) and d1 found in a cross of Taichung 65 isogenic lines. Rice Genet Newsl, 1991, 8: 104
[43]Liang C Z, Gu M H, Pan X B, Liang G H, Zhu L H. RFLP tagging of a new semidwarfing gene in rice. Theor Appl Genet, 1994, 88: 898-900
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!