欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1159-1166.doi: 10.3724/SP.J.1006.2011.01159

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻细卷叶突变体nrl2(t)的遗传分析和基因定位

王德仲,桑贤春,游小庆,王增,王秋实,赵芳明,凌英华,李云峰,何光华*   

  1. 西南大学水稻研究所 / 重庆市转基因植物与安全控制重点实验室,重庆400715
  • 收稿日期:2011-01-12 修回日期:2011-03-27 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 何光华, E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071480),重庆市自然科学基金项目(CSTC,2010BB1131)和中央高校西南大学基本业务基金项目(XDJK2010B011)资助。

Genetic Analysis and Gene Mapping of a Novel Narrow and Rolled Leaf Mutant nrl2(t) in Rice (Oryza sativa L.)

WANG De-Zhong,SANG Xian-Chun,YOU Xiao-Qing,WANG Zeng,WANG Qiu-Shi,ZHAO Fang-Ming,LING Ying-Hua,LI Yun-Feng,HE Guang-Hua*   

  1. Rice Research Institute, Southwest University / Chongqing Key Laboratory of Transgenic Plant and Safety Control, Chongqing 400715, China
  • Received:2011-01-12 Revised:2011-03-27 Published:2011-07-12 Published online:2011-05-11
  • Contact: 何光华, E-mail: hegh@swu.edu.cn

摘要: 研究调控水稻叶片发育基因对水稻功能基因组学和株型改良有着重要的意义。本研究从籼稻恢复系缙恢10号的EMS突变体库中发现一个水稻新型突变体,命名为nrl2(t)。该突变体叶片卷曲、变细、伸长,茎秆变细,抽穗期提前,叶绿素含量增高,孕穗期剑叶生长素含量降低,而幼穗中生长素含量有所提高。遗传分析表明该性状受一对隐性基因控制。利用SSR标记将该基因定位于第3染色体SSR标记s3RM1和s3RM3之间,物理距离约为114 kb。研究结果为该基因的克隆及进一步揭示细叶卷曲形成的分子机理奠定了基础。

关键词: 水稻(Oryza sativa L.), 细卷叶, 遗传分析, 基因定位, 生长素

Abstract: Study of the genes which regulate leaf development is significant in rice functional genomics research and molecular breeding. In the present study, a novel rolled and narrow leaf mutant was obtained from the rice (Oryza sativa L.) restorer line Jinhui 10 treated by ethyl methyl sulphonate (EMS), named nrl2(t). The mutant exhibited narrow/semi-rolled and elongate leaves, earlier flowering, thinner stalk, higher pigment content and higher plant height compared with the control. The indole-3-acetic acid (IAA) content relatively reduced in the flag leaf compared to that of wild type, but increased in the young panicle at the heading stage. Genetic analysis indicated that the mutant was controlled by a single recessive gene, located on the chromosome 3 between SSR markers s3RM1 and s3RM3, delimiting to a 114 kb region. These results will lay a good foundation for molecular cloning and functional analysis of the NRL2(t).

Key words: Rice (Oryza sativa L.), Narrow and rolled leaf, Genetic analysis, Gene mapping, IAA

[1]Yuan L-P(袁隆平). Super-high yield hybrid rice breeding. Hybrid Rice (杂交水稻), 1997, 12(6): 1–6 (in Chinese with English abstract)
[2]Lang Y-Z(郎有忠), Zhang Z-J(张祖建), Gu X-Y(顾兴友), Yang J-Z(杨建昌), Zhu Q-S(朱庆森). Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin (作物学报), 2004, 30(9): 806–810 (in Chinese with English abstract)
[3]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Comparison of leaf photosynthetic characteristics among rice hybrids with different leaf rolling index. Acta Agron Sin (作物学报), 2001, 27(3): 329–333 (in Chinese with English abstract)
[4]Luo Y-Z(罗远章), Zhao F-M(赵芳明), Sang X-C(桑贤春), Ling Y-H(凌英华), Yang Z-L(杨正林), He G-H(何光华). Genetic analysis and gene mapping of a novel rolled-leaf mutant rl12(t) in rice. Acta Agron Sin (作物学报), 2009, 35(11): 1967–1972 (in Chinese with English abstract) 
[5]Shao Y-J(邵元健), Chen Z-X(陈宗祥), Zhang Y-F(张亚芳), Chen E-H(陈恩会), Qi D-C(祁顶成), Miao J(缪进), Pan X-B(潘学彪). One major QTL mapping and physical map construction for rolling leaf in rice. Acta Genet Sin (遗传学报), 2005, 32(5): 501–506 (in Chinese with English abstract)
[6]Li S-G(李仕贵), Ma Y-Q(马玉清), He P(何平), Li H-Y(黎汉云), Chen Y(陈英), Zhou K-D(周开达), Zhu L-H(朱立煌). Genetic analysis and mapping the flag leaf rolling rice (Oryza sativa L.). J Sichuan Agric Univ (四川农业大学学报), 1998, 16(4): 391–393 (in Chinese with English abstract)
[7]Shao Y J, Pan C H, Chen Z X, Zuo S M, Zhang Y F, Pan X B. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.). Chin Sci Bull, 2005, 50: 2466–2472
[8]Yan C J, Yan S, Zhang Z Q, Liang G H, Lu J F, Gu M H. Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Chin Sci Bull, 2005, 51: 63–69
[9]Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene RL10(t) in rice (Oryza sativa L.). Genome, 2007, 50: 811–817
[10]Yu D(余东), Wu H-B(吴海滨), Yang W-T(杨文韬), Gong P-T(巩鹏涛), Li Y-Z(李有志), Zhao D-G(赵德刚). Genetic analysis and mapping of the unilateral rolled leaf trait of rice mutant B157. Mol Plant Breed (分子植物育种), 2008, 6(2): 220–226 (in Chinese with English abstract)
[11]Shi Y F(施勇烽), Chen J(陈洁), Liu W Q(刘文强), Huang Q N(黄奇娜), Shen B(沈波), Hei L(HEI Leung), Wu J L(吴建利). Genetic analysis and gene mapping of a novel rolled leaf mutant in rice (Oryza sativa L.). Sci China Series C: Life Sci (中国科学C辑: 生命科学), 2009, 39(4): 407–412 (in Chinese)
[12]Wang D K, Liu H Q, Li K L, Li S J, Tao Y Z. Genetic analysis and gene mapping of a narrow leaf mutant in rice (Oryza sativa L.). Chin Sci Bull, 2009, 54: 752–758
[13]Zhou Y, Fang Y X, Zhu J Y, Li S Q, Gu F, Gu M H, Liang G H. Genetic analysis and gene fine mapping of a rolling leaf mutant (rl11(t)) in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 1763–1769
[14]Li M, Xiong G Y, Li R, Cui J J, Tang D, Zhang B C, Pauly M, Cheng Z K, Zhou Y H. Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J, 2009, 60: 1055–1069
[15]Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G, Ren F G, Palme K, Zhao B R, Chen J F, Chen M S, Li C Y. Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947–1959
[16]Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraajie M W, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499–507
[17]Zeng S Y, Guo M, Li M, Meng Q C, Hu Q, Gong Z Y, Gu M H, Yan C J. Identification and gene mapping of a rice dynamic narrow leaf mutant. Chin Sci Bull, 2010, 55: 2106–2111
[18]Woo Y M, Park H J, Su’udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125–136
[19]Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283–292
[20]Wu C, Fu Y P, Hu G C, Si H M, Cheng S H, Liu W Z. Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta, 2010, 232: 314–323
[21]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol, 1987, 48: 350–382
[22]McCouch S R, Kochert G,Yu Z H. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76: 148–159
[23]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705–707 (in Chinese with English Abstract)
[24]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 259: 597–607
[25]Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu N Y, Bandyopadhyay A, Estelle M. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development, 2000, 127: 23–32
[26]Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol, 2003, 131: 1327–1339
[27]Yan S, Yan C J, Zeng X-H, Yang Y C, Fang Y W, Tian C Y, Sun Y W, Cheng Z K, Gu M H. ROLLED LEAF 9 encoding a GARP protein regulates the leaf abaxial cell fate in rice. Plant Mol Biol, 2008, 68: 239–250
[28]Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719–735
[29]Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99–108
[30]Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345–354
[31]Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol, 2010, 2: a001511
[32]Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development. Plant Mol Biol, 2009, 69: 347–360
[33]Zgurski J M, Sharma R, Bolokoski D A, Schultz E A. Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell, 2005, 17: 77–91
[34]Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant J, 2009, 60: 227–241
[35]Yoko O, Irina M, Hong L, Theologis A. Auxin response factor2 (ARF2): a pleiotropic developmental regulator. Plant J, 2005, 43: 29–46
[36]Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 2000, 12: 2351–2366
[37]Micol L J, Hake S. The development of plant leaves. Plant Physiol, 2003, 131: 389–394
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[5] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[6] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[7] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[8] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[9] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[10] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[11] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[12] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[13] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[14] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[15] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!