作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1525-1532.doi: 10.3724/SP.J.1006.2011.01525
冯跃,翟荣荣**,曹立勇,林泽川,魏兴华,程式华*
FENG Yue,ZHAI Rong-Rong**,CAO Li-Yong,LIN Ze-Chuan,WEI Xing-Hua,CHENG Shi-Hua*
摘要: 利用超级杂交稻协优9308 (协青早B×中恢9308)衍生的重组自交系(recombinant inbred line, RIL)群体及其分子连锁图谱, 应用Windows QTL Cartographer 2.5对施氮和不施氮条件下水稻株高(PH)和抽穗期(HD)进行了QTL分析。在2种氮水平下检测到9个株高QTL和8个抽穗期QTL, 检测到4个影响2种环境下株高和抽穗期差值的QTL, 单个QTL可解释的表型变异介于5.68%~18.40%之间;在第7染色体上RM5436附近和第8染色上RM5556~RM310区间检测到同时控制2种氮水平下株高和抽穗期的QTL, 各位点的遗传效应贡献率较大, 增效等位基因均来源于R9308, 适用于分子标记辅助育种和聚合育种。在第2染色体上RM5916~RM166区间和第8染色体上RM2366~RM5767区间分别检测到1个影响2种氮水平下抽穗期差值和1个株高差值的QTL可能对水稻的氮素高效利用有直接贡献。
[1]Cassman K G, Peng S B, Olk D C, Ladha J K, Reichardt, Dobermann A, Singh U. Opportunities for increased nitrogen use efficiency from improved management in irrigated rice systems. Field Crops Res, 1998, 56: 7-39 [2]Vlek P L, Byrnes B H. The efficacy and loss of fertilizer N in lowland rice. Fert Res, 1986, 9: 131-147 [3]Fang P, Yu X M, Zhu R Q, Wu P. QTLs for rice leaf chlorophyll content under low N stress. Pedosphere, 2004, 14: 145-150 [4]Fang P(方萍), Tao Q-N(陶勤南), Wu P(吴平). QTLs underlying rice root to uptake NH4-N and NO3-N and rice N use efficiency at seedling stage. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(2): 159-165 (in Chinese with English abstract) [5]Fang P, Wu P. QTL × N-level interaction for plant height in rice (Oriza sativa L.). Plant Soil, 2001, 236: 237-242 [6]Xing Y-Z(邢永忠), Xu C-G(徐才国), Hua J-P(华金平), Tan Y-F(谈移芳), Sun X-L(孙新立). Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice. Acta Bot Sin (植物学报), 2001, 43(7): 721-726 (in Chinese with English abstract) [7]Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374-381 [8]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101 [9]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153 [10]Ma L-Y(马良勇), Bao J-S(包劲松), Li X-M(李西明), Zhu X-D(朱旭东), Ji Z-J(季芝娟), Xia Y-W(夏英武), Yang C-D(杨长登). Progress on cloning and functional analysis of dwarfism related genes in rice. Chin J Rice Sci (中国水稻科学), 2009, 23(1): 1-11 (in Chinese with English abstract) [11]Yang D-W(杨德卫), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Ling J(林静), Chen T(陈涛), Zhu W-Y(朱文银), Wang C-L(王才林). Mapping and genetic analysis of quantitative trait loci for heading date with chromosome segment substitution lines in Oryza sativa. Chin Bull Bot (植物学报), 2010, 45(2): 189-197 (in Chinese with English abstract) [12]Feng Y, Cao L Y, Wu W M, Shen X H, Zhan X D, Zhai R R, Chen D B, Cheng S H. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breed, 2010, 129: 652-656 [13]Shen X-H(沈希宏), Chen S-G(陈深广), Cao L-Y(曹立勇), Zhan X-D(占小登), Chen D-B(陈代波), Wu W-M(吴伟明), Cheng S-H(程式华). Construction of genetic linkage map based on a RIL population derived from super hybrid rice. Mol Plant Breed (分子植物育种), 2008, 6(5): 861-866 (in Chinese with English abstract) [14]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL Nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [15]Senaratne R, Ratnasinghe D S. Nitrogen fixation and beneficial effects of some grain legurnes and green-manure crops on rice. Boil Fert Soils, 1995, 19: 49-54 [16]Cao G-L(曹桂兰), Zhang Y-Y(张媛媛), Piao Z-Z(朴钟泽), Han L-Z(韩龙植). Evaluation of tolerance to low N-fertilizered level for rice type. J Plant Genet Resour (植物遗传资源学报), 2006, 7(3): 316-320 (in Chinese with English abstract) [17]Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Gao X-Z(高熙宗). Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 233-238 (in Chinese with English abstract) [18]Jiang L-G(江立庚), Dai T-B(戴廷波), Wei S-Q(韦善清), Gan X-Q(甘秀芹), Xu J-Y(徐建云), Cao W-X(曹卫星). Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin (植物生态学报), 2003, 27(4): 466-471 (in Chinese with English abstract) [19]Feng Y(冯跃), Cao L-Y(曹立勇), Wu W-M(吴伟明), Shen X-H(沈希宏), Zhan X-D(占小登), Zhai R-R(翟荣荣), Chen D-B(陈代波), Cheng S-H(程式华). Conparative analyses of QTLs for N-deficiency tolerance at different seedling stages in rice (Oryza sativa L.). Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(4): 880-886 (in Chinese with English abstract) [20]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808 [21]Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (Oryza sativa L.). Acta Genet Sin, 2001, 28(2): 135-143 [22]Li Z-F(李泽福), Zhou T(周彤), Zheng T-Q(郑天清), Luo L-G(罗林广), Xia J-F(夏加发), Zhai H-Q(翟虎渠), Wan J-M(万建民). Analysis of QTL × environment interactions for heading date of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 771-776 (in Chinese with English abstract) [23]Wang Y(王韵), Cheng L-R(程立锐), Sun Y(孙勇), Zhou Z(周政), Zhu L-H(朱苓华), Xu Z-J(徐正进), Xu J-L(徐建龙). Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2009, 35(8): 1386-1394 (in Chinese with English abstract) [24]Lian X M, Xing Y Z, Yan H, Xu C G, Li X H, Zhang Q F. QTLs for nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005, 112: 85-96 [25]Tong H H, Mei H W, Yu X Q, Xu X Y, Li M S, Zhang S Q, Luo L J. Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genet Sin, 2006, 33(5): 458-467 [26]Fang P(方萍), Jing T-W(季天委), Tao Q-N(陶勤南), Wu P(吴平). Detecting QTLs for rice panicle length under two nitrogen levels. Chin J Rice Sci (中国水稻科学), 2002, 16(2): 176-178 (in Chinese with English abstract) [27]Liu W-J(刘文俊), Wang L-Q(王令强), He Y-Q(何予卿). Comparison of quantitative traits locis controlling plant height and heading date in rice across two related populations. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(2): 161-166 (in Chinese with English abstract) [28]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767 [29]Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xiong Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice(Oryza sativa). Theor Appl Genet, 2006, 113: 361-368 [30]Mu P(穆平), Huang C(黄超), Li J-X(李君霞), Liu L-F(刘立峰), Liu Y-J(刘弋菊), Li Z-C(李自超). Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency. Acta Agron Sin (作物学报), 2008, 34(7): 1137-1142 (in Chinese with English abstract) [31]Chen Q-Q(陈庆全), Yu S-B(余四斌), Li C-H(李春海), Mou T-M(牟同敏). Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin (中国农业科学), 2008, 41(2): 315-321 (in Chinese with English abstract) [32]Shen S-Q(沈圣泉), Zhuang J-Y(庄杰云), Shu X-L(舒小丽), Bao J-S(包劲松), Xia Y-W(夏英武). Analysis of QTLs mapping of tolerance to high Al3+ stress at seedling stage in rice. Acta Agron Sin (作物学报), 2006, 32(4): 479-483 (in Chinese with English abstract) [33]Zhao X-Q(赵秀琴), Xu J-L(徐建龙), Zhu L-H(朱苓华), Li Z-K(黎志康). QTL mapping of yield and root traits under irrigation and drought conditions using advanced backcross introgression lines in rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1887-1893 (in Chinese with English abstract) [34]Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet, 2004, 110: 1-11 [35]Shan Y H, Wang Y L, Pan X B. Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L.). Agric Sci China, 2005, 4(10): 721-727 [36]Cho Y, Jiang W Z, Chin J H, Piao Z Z, Cho Y G, Mccouch S R, Koh H J. Identification of QTLs associated with physiological nitrogen use efficiency in rice. Mol Cell, 2007, 23: 72-79 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|