欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 202-209.doi: 10.3724/SP.J.1006.2012.00202

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆花叶病毒(SMV)株系SC4和SC8的抗性遗传分析

王大刚1,2,马莹1,刘宁1,郑桂杰1,杨中路1,杨永庆1,智海剑1,*   

  1. 1南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室,江苏南京210095;2安徽省农业科学院作物研究所 / 安徽省农作物品质改良重点实验室, 安徽合肥230031
  • 收稿日期:2011-07-22 修回日期:2011-10-17 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 通讯作者: 智海剑, E-mail: zhj@njau.edu.cn, Tel: 025-84396463
  • 基金资助:

    本研究由国家自然科学基金项目(30571176),高等学校学科创新引智计划(B08025)和国家大豆产业技术体系(CARS-004)项目资助。

Inheritance of Resistances to Soybean Mosaic Virus Strains SC4 and SC8 in Soybean

WANG Da-Gang1,2,MA Ying1,LIU Ning1,ZHENG Gui-Jie1,YANG Zhong-Lu1,YANG Yong-Qing1,ZHI Hai-Jian1,*   

  1. 1 National Key Laboratory for Crop Genetics and Germplasm Enhancement / Soybean Research Institute of Nanjing Agriculture University / National Center for Soybean Improvement, Nanjing 210095, China; 2 Crop Institute of Anhui Academy of Agricultural Sciences / Key Laboratory of Crop Quality Improvement of Anhui Province, Hefei 230031, China
  • Received:2011-07-22 Revised:2011-10-17 Published:2012-02-12 Published online:2011-12-01
  • Contact: 智海剑, E-mail: zhj@njau.edu.cn, Tel: 025-84396463

摘要: 选用我国黄淮和长江流域大豆产区发生频繁的SMV株系SC4和SC8,利用大豆抗病材料和感病材料配制抗感和抗抗杂交组合,研究抗病材料对SC4和SC8株系的遗传方式以及不同大豆材料对SMV抗性基因位点间的等位性关系。结果表明, 接种SC4株系后,由冀LD42、徐豆1号、跃进4号、科丰1号、PI96983、晋大74、汾豆56、大白麻和齐黄22为抗源配制的9个抗感组合的F1均表现抗病,经卡方测验, F2抗感分离比例3∶1,F2:3家系分离比例为1(抗)∶2(分离)∶1(感),表明这些抗源均有1对基因控制对SC4株系的抗性,且抗病表现为显性;5个抗抗组合的F1均表现抗病,F2群体分离比例15(抗)∶1(感),表明大白麻与汾豆56、科丰1号和齐黄1号携带抗SC4的基因是不等位的,冀LD42与汾豆56,晋大74与中作229是不等位的。接种SC8株系后,用齐黄1号、中作229、NY58、科丰1号、PI96983、晋大74、汾豆56、大白麻和齐黄22为抗源配制的抗感组合杂交后代分离符合1对基因的分离比例且F1均表现抗病,说明这些品种对SC8株系的抗性也均由1对显性基因控制。抗抗组合晋大74×汾豆56接种SC8株系后的F2群体全部表现抗病,F2:3家系没有抗感分离,表明抗病品种晋大74与汾豆56携带的抗病基因是等位的;齐黄1号×科丰1号、大白麻×汾豆56的F2群体分离比例15(抗)∶1(感),表明抗病亲本齐黄1号与科丰1号、大白麻与汾豆56携带抗SC8的基因是不等位的,而且独立遗传。

关键词: 大豆, 大豆花叶病毒, 抗性遗传, 等位性

Abstract: Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases worldwide, resulting in significant yield losses and seed-quality deterioration in soybean [Glycine max (L.) Merr.]. Utilization of resistant varieties is the most economical and environmentally safe approach to controlling this disease. The SMV strains SC4 and SC8 were predominant and widespreading in Huang-Huai-Hai and Yangtze valley in China. Twelve soybean resistant (R) cultivars were crossed respectively with susceptible (S) cultivars (Nannong1138-2, NY30, NY185, 86-4 or 8101) to determine resistance to SC4 or SC8. Resistant parent was also crossed with each other to identify whether resistant genes from different cultivars are at the same or at different loci by the test of allelic relationships of the resistance genes. The experiments were performed under greenhouse/net-house conditions. The F2 populations and F2:3 lines derived from all the possible crosses (R×S) exhibited a segregation pattern of 3R:1S and 1R:2segregating:1S ratio respectively when inoculated with the SMV strains SC4 and (or) SC8. The results indicated that Ji LD42, Xudou 1, Yuejin 4 and Qihuang 1, Zhongzuo 229, NY 58 carried a dominant resistant gene for SMV strains SC4 and SC8 respectively; Kefeng 1, PI96983, Jinda74, Fendou 56, Dabaima, and Qihuang 22 carried single dominant resistant gene for both SC4 and SC8. The test of the allelism of the resistance genes to SC4 showed that the F2 populations from R×R crosses exhibited a segregation pattern of 15R:1S. The results suggested that the resistance genes between Dabaima and Fendou56, Kefeng 1, Qihuang 1; between Ji LD42 and Fendou56; and between Jinda74 and Zhongzuo229 were not at the same locus. Resistance reactions of F2 and F2:3 families to SC8 indicated that single dominant resistant gene in Jinda74 and Fendou56 was at a same locus or closely linked two loci. The resistance genes between Qihuang 1 and Kefeng 1 and between Dabaima and Fendou56 were not at same locus for SC8. These results are useful to understand the genetic and allelomorphic relationship among various sources of resistance and make the better use of available germplasm in soybean resistance breeding programs.

Key words: Soybean, Soybean mosaic virus, Inheritance of resistance, Allelism

[1]Kiihl R A S, Hartwig E E. Inheritance of reaction to soybean mosaic virus in soybeans. Crop Sci, 1979, 19: 372–375

[2]Lim S M. Resistance to soybean mosaic virus in soybeans. Phytopathology, 1985, 75: 199–201

[3]Chen Y(陈怡), Luan X-Y(栾晓燕), Huang C-Y(黄承运), Gu X-Z(谷秀芝), Du W-G(杜维广), Zhang G-R(张桂茹), Man W-Q(满为群), Wang B-R(王彬如). Genetics of resistance to two strains of soybean mosaic virus in soybean. Heilongjiang Agric Sci (黑龙江农业科学), 1991, (5): 21–24 (in Chinese with English abstract)

[4]Li H-C(李海朝), Zhi H-J(智海剑), Bai L(白丽), Yang H(杨华), Ma Y(马莹), Liu N(刘宁), Wang D-G(王大刚). Studies on inheritance and allelism of resistance genes to SMV strain SC-11 in soybean. Soybean Sci (大豆科学), 2006, 25(4): 365–368 (in Chinese with English abstract)

[5]Guo D-Q(郭东全), Wang Y-W(王延伟), Zhi H-J(智海剑), Gai J-Y(盖钧镒), Li H-C(李海朝), Li K(李凯). Inheritance and gene mapping of reistance to SMV strain group SC-13 in soybean. Soybean Sci (大豆科学), 2007, 26(1): 21–24 (in Chinese with English abstract)

[6]Bai L(白丽), Li H-C(李海朝), Ma Y(马莹), Wang D-G(王大刚), Liu N(刘宁), Zhi H-J(智海剑). Inheritance and gene mapping of resistance to soybean mosaic virus strain SC-11 in soybean. Soybean Sci (大豆科学), 2009, 28(1): 1–6 (in Chinese with English abstract)

[7]Kwon S H, Oh J H. Resistance to a necrotic strain of soybean mosaic virus in soybean. Crop Sci, 1980, 20: 403–404

[8]Buzzell R I, Tu J C. Inheritance of soybean resistance to soybean mosaic virus. J Hered, 1984, 75: 82

[9]Chen Y. Inheritance of resistance to SMV strain No.1 in the soybean germplasms. Heilongjiang Agric Sci (黑龙江农业科学), 1999, (1): 4–6 (in Chinese with English abstract)

[10]Zheng C M, Chang R Z, Qiu L J. Inheritance of resistance to SMV3 and identification of RAPD marker linked to the resistant gene in soybean. Agric Sci China, 2002, 1(3): 245–250

[11]Chen, P Y, Buss G R, Roane C W, Tolin S A. Allelism among genes for resistance to soybean mosaic virus in strain-differential soybean cultivars. Crop Sci, 1991, 31: 305–309

[12]Chen P Y, Buss G R, Tolin S A. Resistance to soybean mosaic virus conferred by two independent dominant genes in PI 486355. J Hered, 1993, 84: 25–28

[13]Buzzell R I, Tu J C. Inheritance of a soybean stem-tip necrosis reaction to soybean mosaic virus. J Hered, 1989, 80: 400–401

[14]Gunduzm I, Ma G, Buss G R, Chen P Y, Tolin S A. Genetic analysis of resistance to Soybean mosaic virus in OX670 and Harosoy soybean. Crop Sci, 2001, 41: 1785–1791

[15]Buss G R, Ma G, Chen P Y, Tolin S A. Registration of V94-5152 soybean germplasm resistant to soybean mosaic potyvirus. Crop Sci, 1997, 37: 1987–1988

[16]Gunduz I, Buss G R, Chen P Y, Tolin S A. Genetic and phenotypic analysis of Soybean mosaic virus resistance in PI 88788 soybean. Phytopathology, 2004, 94: 687–692

[17]Zhang Z Y, Chen S Y, Gai J Y. Molecular markers linked to Rsa resistant to soybean mosaic virus. Chin Sci Bull, 1999, 44: 154–158

[18]Wang Y-J(王永军), Dong-Fang Y(东方阳), Wang X-Q(王修强), Yang Y-L(杨雅麟), Yu D-Y(喻德跃), Gai J-Y(盖钧镒), Wu X-L(吴晓雷), He C-Y(贺超英), Zhang J-S(张劲松), Chen S-Y(陈受宜). Mapping of five genes resistant to SMV strains in soybean. Acta Genet Sin (遗传学报), 2004, 31(1): 87–90 (in Chinese with English abstract)

[19]Fu S X, Zhan Y, Zhi H J, Gai J Y, Yu D Y. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica, 2006, 128: 63–69

[20]Li H C, Zhi H J, Gai J Y, Guo D Q, Wang Y W, Li K, Bai L, Yang H. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean. J Integr Plant Biol, 2006, 48: 1466–1472

[21]Liao L(廖林), Liu Y-Z(刘玉芝), Sun D-M(孙大敏), Zhao R-L(赵荣林), Tan P-Z(田佩占). Inheritance of soybean resistant to soybean mosaic virus: I. Inheritance of several resistant varieties introduced resistant to No. II strain of SMV. Acta Genet Sin (遗传学报), 1994, 21(5): 403–408 (in Chinese with English abstract)

[22]Zheng C-M(郑翠明), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Inheritance of resistance to SMV3 and identification of RAPD marker linked to the resistance gene in soybean. Sci Agric Sin (中国农业科学), 2001, 34(1): 1–4 (in Chinese with English abstract)

[23]Wang X-Q(王修强), Gai J-Y(盖钧镒), Pu Z-Q(濮祖芹). Classification and distribution of strain groups of soybean mosaic virus in middle and lower Huang-Huai and Changjiang valleys. Soybean Sci (大豆科学), 2003, 22(2): 102–107 (in Chinese with English abstract)

[24]Wang X-Q(王修强), Gai J-Y(盖钧镒), Yu D-Y(喻德跃). Inheritance of resistance to the SMV strain group SC-8 in kefeng No.1. Soybean Sci (大豆科学), 2003, 8(3): 190–192 (in Chinese with English abstract)

[25]Tu J C, Buzzell R I. Stem-tip necrosis: a hypersensitive, temperature dependent, dominant gene reaction of soybean to infection by soybean mosaic virus. Can J Plant Sci, 1987, 67: 661–665

[26]Chen P Y, Buss G R, Roane C W, Tolin S A. Inheritance in soybean of resistant and necrotic reactions to soybean mosaic virus strains. Crop Sci, 1994, 34: 414–422

[27]Wang D G, Ma Y, Liu N, Yang Z L, Zheng G J, Zhi H J. Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breed, 2011, doi:10.1111/j.1439-0523.2011.01888.x

[28]Ma G, Chen P Y, Buss G R, Tolin S A. Genetic characteristics of two genes for resistance to soybean mosaic virus in PI486355 soybean. Theor Appl Genet, 1995, 91: 907–914
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!