作物学报 ›› 2012, Vol. 38 ›› Issue (02): 191-201.doi: 10.3724/SP.J.1006.2012.00191
• 综述 • 下一篇
叶兴国1,佘茂云1,2,王轲1,杜丽璞1,徐惠君1
YE Xing-Guo1,SHE Mao-Yun1,2, WANG Ke1,DU Li-Pu1,XU Hui-Jun1
摘要: 离体植物组织体细胞胚胎发生是一个复杂的无性繁殖过程,依次经历外源植物激素信号应答、已分化细胞的脱分化、静止细胞的再分裂以及特定组织、器官原基或分生组织的形成等,是多个基因在外界因素刺激下协调、有序表达和互作的结果,不但受培养基中植物激素和营养成分的影响,也与外植体的生理状态关系密切。本文综述了外源激素和内源激素在植物组织培养中的作用,以及外源激素对内源激素的调节功能;重点介绍了5类与植物体细胞胚胎发生有关的候选基因,包括体细胞胚胎发生相关类受体蛋白激酶、阿拉伯葡聚糖酶、亚硝酸还原酶、生长素结合蛋白和抗氧化酶。再生相关基因的利用不但有助于提高植物组织培养植株再生率和遗传转化率,而且有助于获得安全型转基因植物,在基因工程育种中具有潜在应用前景。不同植物和同种植物不同外植体组织培养中调控体细胞胚胎发生的主效基因可能不同,关键再生相关基因的克隆和功能鉴定是今后需要加强的方向。
[1]Verdeil J L, Alemanno L, Niemenak N, Tranbarger T J. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci, 2007, 12: 245-252 [2]Sathyanarayana B N, Varghese D B. Plant Tissue Culture: Practices and New Experimental Protocols, , New Delhi, India: I.K. International Publishing Housse Pvt. Ltd. 2007. pp 1-8 [3]Zhu Z-Q(朱至清). Theoretic basis of plant cell engineering: cell totipotency. In: Plant Cell Engineering (植物细胞工程). Beijing, China: Chemical Industry Press, 2003. pp 1-14 [4]Zimmermann J L, Apuya N, Darwish K, O’Caroll C. Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell, 1989, 1: 1137-1146 [5]Gupta S D, Conger B V. Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop Sci, 1999, 39: 243-247 [6]Sugiyama M. Organogenesis in vitro. Curr Opin Plant Biol, 1999, 2: 61-64 [7]Zhao X Y, Su Y H, Cheng Z J, Zhang X S. Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol, 2008, 50: 816-824 [8]Jiménez V M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul, 2005, 47: 91-110 [9]Lakshmanan P, Ng S K, Loh C S, Goh C J. Auxin, cytokinin and ethylene differentially regulate specific developmental states associated with shoot bud morphogenesis in leaf tissues of mangosteen (Garcinia mangostana L.) cultured in vitro. Plant Cell Physiol, 1997, 38: 59-64 [10]Kamada H, Tachikawa Y, Saitou T, Harada H. Heat stresses induction of carrot somatic embryogenesis. Plant Tiss Cul Lett, 1994, 11: 229-232 [11]Singla B, Tyagi A, Khurana J, Khurana P. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol, 2007, 65: 677-692 [12]Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep, 2010, 37: 2493-2507 [13]Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen H, Dudits D, Fehér A. The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol, 2002, 129: 1807-1819 [14]Fischer-Iglesias C, Sundberg B, Neuhaus G, Jones A M. Auxin distribution and transport during embryonic pattern formation in wheat. Plant J, 2001, 26: 115-129 [15]Jiménez V M, Bangerth F. Endogenous hormone levels in explants and in embryogenic and nonembryogenic cultures of carrot. Physiol Plant, 2001, 111: 389-395 [16]Mahalakshmi A, Khurana J P, Khurana P. Rapid induction of somatic embryogenesis by 2,4-D in leaf base cultures of wheat (Triticum aestivum L.). Plant Biotechnol, 2003, 20: 267-273 [17]Singla B, Khurana J, Khurana P. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep, 2008, 27: 833-843 [18]Ogawa T, Kawahigashi H, Toki S, Handa H. Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Rep, 2008, 27: 1325-1331 [19]Nissen P, Minocha S C. Inhibition by 2,4-D of somatic embryogenesis in carrot as explored by its reversal by difluoromethylornithine. Physiol Plant, 1993, 89: 673-680 [20]Michalczuk L, Druart P. Indole-3-acetic acid metabolism in hormone-autotrophic, embryogenic callus of Inmil (R) cherry rootstock (Prunus incisa × serrula ‘GM9’) and in hormone-dependent, non-embryogenic calli of Prunus incisa × serrula and Prunus domestica. Plant Physiol, 1999, 107: 426-432 [21]Michalczuk L, Cooke T J, Cohen J D. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry, 1992, 31: 1097-1103 [22]Miroshnichenko D, Filippov M, Dolgov S. Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat. Aust J Crop Sci, 2009, 3: 83-94 [23]Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta, 2000, 211: 756-759 [24]Charriére F, Sotta B, Miginiac É, Hahne G. Induction of adventitious or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol Bioch, 1999, 37: 751-757 [25]Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen H. Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Plant Physiol, 1994, 92: 85-89 [26]Fernando S C, Gamage C K A. Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci, 2000, 151: 193-198 [27]Choi Y E, Yang D C, Park J C, Soh W Y, Choi K T. Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep, 1998, 17: 544-551 [28]Schmidt E D, Guzzo F, Toonen M A, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124: 2049-2062 [29]Li J. Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol, 2010, 13: 509-514 [30]Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803-816 [31]Becraft P W. Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol, 2002, 18: 163-192 [32]Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 2005, 222: 107-117 [33]Nolan K E, Kurdyukov S, Rose R J. Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot, 2009, 60: 1759-1771 [34]Gruszczyńska A, Rakoczy-Trojanowska M. Expression analysis of somatic embryogenesis-related SERK; LEC1; VP1; and NiR ortologues in rye (Secale cereale L.). J Appl Genet, 2011, 52: 1-8 [35]Zhang S, Liu X, Lin Y, Xie G, Fu F, Liu H, Wang J, Gao S, Lan H, Rong T. Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tiss Org, 2011, 105: 29-37 [36]Zakizadeh H, Stummann B, Lütken H, Müller R. Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss Org, 2010, 101: 331-338 [37]Yakandawala N, Jordan M C. Isolation of a somatic embryogenesis receptor kinase gene from wheat and assessment of its role in transformation. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, eds. Proceedings of 11th International Wheat Genetics Symposium 2008. Sydney, Austrilia: Sydney University Press, 2008. pp 610-612 [38]Ito Y, Takaya K, Kurata N. Expression of SERK family receptor-like protein kinase genes in rice. Biochim Biophys Acta Gene Struct Expr, 2005, 1730: 253-258 [39]Baudino S, Hansen S, Brettschneider R, Hecht V F G, Dresselhaus T, Lorz H, Dumas C, Rogowsky P M. Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1-10 [40]Yopp J H, Mandava N B, Sasse J M. Brassinolide, a growth-promoting steroidal lactone. Physiol Plantarum, 1981, 53: 445-452 [41]Chapman A, Blervacq A S, Vasseur J, Hilbert J L. Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta, 2000, 211: 305-314 [42]Lucau-Danila A, Laborde L, Legrand S, Huot L, Hot D, Lemoine Y, Hilbert J L, Hawkins S, Quillet M C, Hendriks T, Blervacq A S. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.). BMC Plant Biol, 2010, 10: 122-136 [43]Legrand S, Hendriks T, Hilbert J L, Quillet M C. Characterization of expressed sequence tags obtained by SSH during somatic embryogenesis in Cichorium intybus L. BMC Plant Biol, 2007, 7: 27-38 [44]Kasha K J, Simion E, Miner M, Letarte J, Hu T C B B. Haploid wheat isolated microspore culture protocol. In: Malszynnski M, Kasha K J, Forster B P, Szarejko I, eds. Doubled haploid production in crop plants: a manual. Dordrecht: Kluwer Academic Publishers, 2003 [45]Hellens R, Mullineaux P, Klee H. Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci, 2000, 5: 446-451 [46]Nishimura A, Ashikari M, Lin S, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102: 11940-11944 [47]Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci, 2006, 170: 384-393 [48]Fehér A, Pasternak T, Ötvös K, Miskolczi P, Dudits D. Induction of embryogenic competence in somatic plant cells: a review. Biologia, 2002, 57: 5-12 [49]Goldsworthy A, Mina M G. Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid. Planta, 1991, 183: 368-373 [50]Schauf C L, Bringle B, Stillwell W. Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun, 1987, 143: 1085-1091 [51]Wei Y D, Zheng H G, Hall J C. Role of auxinic herbicide-induced ethylene on hypocotyls elongation and root/hypocotyl radical expansion. Int J Pest Manage, 2000, 56: 377-387 [52]Tromas A, Paponov I, Perrot-Rechenmann C. Auxin binding protein: 1: Functional and evolutionary aspects. Trends Plant Sci, 2010, 15: 436-446 [53]Chen J G, Ullah H, Young JC, Sussman M R, Jones A M et al. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev, 2001, 15: 902-911 [54]Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming A J. Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell, 2008, 20: 2746-2762 [55]David K M, Couch D, Braun N, Brown S, Grosclaude J, Perrot-Rechenmann C. The auxin-binding protein 1 is essential for the control of cell cycle. Plant J, 2007, 50: 197-206 [56]Cutler A, Saleem M, Wang H. Cereal protoplast recalcitrance. In Vitro Cell Dev Biol, 1991, 27: 104-111 [57]Papadakis A, Roubelakis-Angelakis K. Oxidative stress could be responsible for the recalcitrance of plant protoplasts. Plant Physiol Biochem, 2002, 40: 549-559 [58]Lamb C, Dixon R. The oxidative burst in plant disease resistance. Annu Rev Plant Biol, 1997, 48: 251-275 [59]Szechyńska-Hebda M, Skrzypek E, D?browska G, Biesaga-Ko?cielniak J, Filek M, W?dzony M. The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol Plant, 2007, 29: 327-337 [60]Zhang S G, Han S Y, Yang W H, Wei H L, Zhang M, Qi L W. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Org, 2010, 100: 21-29 [61]Gupta S D, Datta S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidant on plant regeneration. Biol Plant, 2003/2004, 47: 179-183 [62]Libik M, Konieczny R, Pater B, Slesak I, Miszalski Z. Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep, 2005, 23: 834-841 [63]Cui K R, Xing G S, Liu X M, Xing G M, Wang Y F. Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci, 1999, 146: 9-16 [64]Rajeswari V, Paliwal K. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L. f. (Benth). Acta Physiol Plant, 2008, 30: 825-832 [65]Tian M, Gu Q, Zhu M Y. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci, 2003, 165: 701-707 [66]Moller I M, Sweetlove L J. ROS signaling-specificity is required. Trends Plant Sci, 2010, 15: 370-374 [67]Zubko E, Adams C J, Macháèková I, Malbeck J, Scollan C, Meyer P. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J, 2002, 29: 797-80 [68]Low R K, Prakash A P, Swarup S, Goh C J, Kumar P P. A differentially expressed bZIP gene is associated with adventitious shoot regeneration in leaf cultures of Paulownia kawakamii. Plant Cell Rep, 2001, 20: 696-700 [69]Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Verkerk R, Zabel P. Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J, 1993, 3: 131-141 [70]Banno H, Ikeda Y, Niu Q W, Chua N H. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell, 2001, 13: 2609-2618 [71]Lotan T, Ohto M, Yee K M, West M A, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93: 1195-1205 [72]Zuo J, Niu Q, Frugis G, Chua, N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359 [73]Galland R, Randoux B, Vasseur J, Hilbert J L. A glutathione-S-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta Gene Struct Expr, 2001, 1522: 212-216 [74]Sauter M, von Wiegen P, Lörz H, Kranz E. Cell cycle regulatory genes from maize are differentially controlled during fertilization and first embryonic cell division. Sexual Plant Reprod, 1998, 11: 41-48 [75]Zhang S, Wong L, Meng L, Lemaux P G. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta, 2002, 215: 191-194 [76]Komatsuda T, Annaka T, Oka S. Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet, 1993, 86: 713-720 |
[1] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[2] | 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248. |
[3] | 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760. |
[4] | 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823. |
[5] | 张伟, 尹米琦, 赵佩, 王轲, 杜丽璞, 叶兴国. 我国部分主推小麦品种组织培养再生能力评价[J]. 作物学报, 2018, 44(02): 208-217. |
[6] | 程伟,李和平,何水林,廖玉才. 寄主诱导的基因沉默提高植物真菌病害抗性研究进展[J]. 作物学报, 2017, 43(08): 1115-1121. |
[7] | 张小萌,刘松江,龚文芳,孙君灵,庞保印,杜雄明. 植物生长调节剂对彩色棉胚珠离体培养纤维发育的影响[J]. 作物学报, 2017, 43(05): 763-776. |
[8] | 王莎,贺勇,罗光宇,姚敏,张旭,陈信波,周小云. OsWR2-RNAi对水稻角质层生物合成和耐旱性的影响[J]. 作物学报, 2017, 43(03): 315-323. |
[9] | 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135. |
[10] | 任琴,王亚军,郭志鸿,李继平,谢忠奎,王若愚,王立,惠娜娜. 植物介导的RNA干扰引起马铃薯晚疫病菌基因的沉默[J]. 作物学报, 2015, 41(06): 881-888. |
[11] | 潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015, 41(02): 175-186. |
[12] | 吴林坤,黄伟民,王娟英,吴红淼,陈军,秦贤金,张重义,林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41(02): 308-317. |
[13] | 王诺菡,于霁雯,吴嫚,马启峰,李兴丽,裴文锋,李海晶,黄双领,张金发,喻树迅. 棉花GhMYB0基因的克隆、表达分析及功能鉴定[J]. 作物学报, 2014, 40(09): 1540-1548. |
[14] | 秦舒浩,曹莉,张俊莲,师尚礼,王蒂. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响[J]. 作物学报, 2014, 40(08): 1452-1458. |
[15] | 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1022
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|