欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 829-839.doi: 10.3724/SP.J.1006.2012.00829

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻核心种质表型性状遗传多样性分析及综合评价

胡标林1,2,4,万勇1,4,李霞1,4,雷建国1,4,罗向东2,严文贵3,谢建坤2,*   

  1. 1 江西农业科学院水稻研究所,江西南昌330200;2江西师范大学生命科学院,江西南昌330022;3 USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, 72160, USA;4水稻国家工程试验室(南昌),江西南昌 330200
  • 收稿日期:2011-09-09 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 谢建坤, E-mail: xiejiankun@yahoo.com, Tel: 0791-88120391
  • 基金资助:

    本研究由国家自然科学基金项目(30960189), 国家公益性行业(农业)科研专项(201103007), 江西省自然科学基金(20114BAB204008)和江西省农业科学院创新基金项目(2010CQN008)资助。

Analysis on Genetic Diversity of Phenotypic Traits in Rice (Oryza sativa) Core Collection and Its Comprehensive Assessment

HU Biao-Lin1,2,4,WAN Yong1,4,LI Xia1,4,LEI Jian-Guo1,4,LUO Xiang-Dong2,YAN Wen-Gui3,XIE Jian-Kun2,*   

  1. 1 Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; 2 College of Life Science, Jiangxi Normal University, Nanchang 330022, China; 3 USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, 72160, USA?; 4 National Engineering Laboratory for Rice, Nanchang, Jiangxi 330200, China
  • Received:2011-09-09 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 谢建坤, E-mail: xiejiankun@yahoo.com, Tel: 0791-88120391

摘要:

种质资源是水稻遗传育种和解析复杂性状的重要基础,而对遗传多样评估有利于鉴定最优亲本组合以产生遗传变异最大的后代群体和促进不同资源的有利基因渗透到栽培品种。选用14个表型性状对美国农业部水稻核心种质中的6大洲
1 579份水稻种质, 分析与评价其遗传多样性和优良稻种资源,主要结果如下: (1)亚洲、非洲与大洋洲间遗传距离较远,且亚洲、非洲和大洋洲的水稻资源具有较丰富的表型遗传多样性,而不同性状的遗传多样性在洲际间表现不同;粒长宽比、碱消值、株高、粒宽、千粒重和淀粉含量等6个性状具有很高的表型遗传多样性。(2)采用主成分分析法和逐步回归分析法综合评判表明,越南的PI392768的综合性状表现最好,法国的PI281760综合性状表现最差,同时淀粉含量、抽穗期、株高、倒伏性、糙米色和颖壳色等6个性状可作为种质资源综合评价指标。在水稻育种中应注重利用具有丰富遗传多样性的种质资源,并在亲本选配时适当选择遗传距离较远且综合性状表现差异大的种质材料。

关键词: 核心种质, 表型性状, 遗传多样性, 主成分分析, 综合评价

Abstract:

Germplasm resources are fundamental in rice breeding and dissecting complex traits; however, assessment of genetic diversity benefits the identification of optimal parental combinations to produce segregating offspring with maximum genetic variability, and facilitates the introgression of favorable genes from various germplasm into commercial cultivars. The USDA rice core collection (USDA-RCC) (1 579 rice accessions originated from six continents), was analyzed with 14 phenotypic traits to assess diversity and phenotypically superior rice germplasm. Themain results were summarized as follows: (1) Genetic distance of the germplasm from Asia and Africa to that of Oceania was larger. Rice germplasm from Asia, Africa and Oceania had accordingly greater phenotypic and genetic diversities, and genetic diversity of different traits was different among continents. Six traits including kernel length/width (KLW), alkali spreading value (ASC), plant height (PH), kernel width (KW), 1000-kernel weight (TKW) and amylose content (AC) had greater genetic diversity. (2) Comprehensive assessment of phenotypic traits was conducted using principal component analysis (392768 from Vietnam had the best comprehensive traits while the accession PI 281760 performed the worst comprehensive traits, and AC, HD, PH, lodging, BRC and HC would be suitable as comprehensive criteria for assessing USDA-RCC germplasm. We suggest these rice germplasm possessing great phenotypic diversity should be widely utilized in breeding programs, moreover, these rice germplasm with farther genetic distance and different comprehensive traits should be appropriately considered for the parental selection.PCA) and step regression analysis, demonstrating that the accession PI

Key words: Core collection, Phenotypic traits, Genetic diversity, Principal component analysis, Comprehensive assessment

[1]Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali L M, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 1-10



[2]Glaszmann J C, Kilian B, Upadhyaya H D, Varshne R K. Accessing genetic diversity for crop improvement. Curr Opin Plant Biol, 2010, 13: 1-7



[3]Hajjar R, Jarvis D I, Gemmill-Herren B. The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ, 2008,123: 261-270



[4]Frankel O H, Brown A H D. Current plant genetic resources-a critical appraisal. In: Chopra V L, Joshi B C, Sharma R P, Bansal H C, eds. Genetics: New Frontiers, Vo1. IV. New Delhi: Oxford and IBH Publishing, 1984. pp 3-11



[5]Brown A H D. The case for core collections. In: Brown A H D, Frankel O H, Marshall D R, Williams J T, eds. The Use of Plant Genetic Resources. Cambridge, England: Cambridge University Press, 1989. pp 136-156



[6]Yan W G, Rutger J N, Bryant R J, Bockelman H E, Fjellstrom R G, Chen M H, Tai T H, McClung A M. Development and evaluation of a core subset of the USDA rice (Oryza sativa L.) germplasm collection. Crop Sci, 2007, 47: 869-878



[7]Hao C Y, Zhang X Y, Wang L F, Dong Y S, Shang X W, Jia J Z. Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Mol Breed, 2006, 17: 69-77



[8]Igartua E, Gracia M P, Lasa J M, Medina B, Molina-Cano J L, Montoya J L, Romagosa I. The Spanish barley core collection. Genet Resour Crop Evol, 1998, 45: 475-481



[9]Qiu L-J(邱丽娟), Cao Y-S(曹永生), Chang R-Z(常汝镇), Zhou X-A(周新安), Wang G-X(王国勋), Sun J-Y(孙建英), Xie H(谢华), Zhang B(张博), Li X-H(李向华), Xu Z-Y(许占有), Liu L-H(刘立宏). Establishment of Chinese soybean (G. max) core collection: I. Sampling strategy. Sci Agric Sin (中国农业科学), 2003, 36(12): 1442-1449 (in Chinese with English abstract)



[10]Grenier C, Hamon P, Bramel-Cox P J. Core collection of sorghum: II. Comparison of three random campling strategies. Crop Sci, 2001, 41: 241-246



[11]Li Y, Shi Y S, Cao Y S, Wang T Y. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet Resour Crop Evol, 2004, 51: 845-852



[12]Coimbra R R, Miranda G V, Cruz C D, Silva D J H, Vilela R A. Development of a Brazilian maize core collection. Genet Mol Biol, 2009, 32: 538-545



[13]Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Guo B Z, Holbrook C C, Uphdyaya H D. Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34 (1): 25-30 (in Chinese with English abstract)



[14]Yu J, Hu S N, Wang J, Wong G K S, Li S G, Liu B, Deng Y J, Dai L, Zhou Y, Zhang X Q, Cao M L, Liu J, Sun J D, Tang J B, Chen Y J, Huang X B, Lin W, Ye C, Tong W, Cong L J, Geng J N, Han Y J, Li L, Li W, Hu G Q, Huang X G, Li W J, Li J, Liu Z W, Li L, Liu J P, Qi Q H, Liu J S, Li L, Li T, Wang X G, Lu H, Wu T T, Zhu M, Ni P X, Han H, Dong W, Ren X Y, Feng X L, Cui P, Li X R, Wang H, Xu X, Zhai W X, Xu Z, Zhang J S, He S J, Zhang J G, Xu J C, Zhang K L, Zheng X W, Dong J H, Zeng W Y, Tao L, Ye J, Tan J, Ren X D, Chen X W, He J, Liu D F, Tian W, Tian C G, Xia H A, Bao Q Y, Li G, Gao H, Cao T, Wang J, Zhao W M, Li P, Chen W, Wang X D, Zhang Y, Hu J F, Wang J, Liu S, Yang J, Zhang G Y, Xiong Y Q, Li Z J, Mao L, Zhou C S, Zhu Z, Chen R S, Hao B L, Zheng W M, Chen S Y, Guo W, Li G J, Liu S Q, Tao M, Wang J, Zhu L H, Yuan L P, Yang H M. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92



[15]Negrao S, Oliveira M M, Jena K K, Mackill D. Integration of genomic tools to assist breeding in the japonica subspecies of rice. Mol Breed, 2008, 22: 159-168



[16]Xu K D, Shen G F. Promoting Chinese rice production through innovative science and technology. In: Mew T W, Brar D S, Peng S, Dawe D, Hardy B, eds. Rice Science: Innovations and Impact for Livelihood, Beijing: International Rice Research Institute, Chinese Academy of Engineering, and Chinese Academy of Agricultural Sciences, 2003. pp 11-18



[17]Chakravarthi B K, Naravaneni R. SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa L). Afr J Biotechnol, 2006, 5: 684-688



[18]Basnet B M S. Enviroment friendly technologies for increasing rice productivity. J Agric Environ, 2008, 9: 34-40



[19]Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822



[20]Pervaiz Z H, Rabbani M A, Khaliq I, Pearce S R, Malik S A. Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani rice landraces. Electron J Biotechnol, 2010, 13: 1-12



[21]Qi Y W, Zhang D L, Zhong H L, Wang M X, Sun J L, Wei X H, Qiu Z G, Tang S X, Cao Y S, Wang X K, Li Z C. Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Chin Sci Bull, 2006, 51: 681-688



[22]Carmanoa S, Alvarez J B, Caballero L. Genetic diversity for morphological traits and seed storage proteins in Spanish rivet wheat. Biol Plant, 2010, 54: 69-75



[23]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76



[24]Chen Y J, Li C P, Huang H J, Jan J Y, Lin S F. Genetic diversity evaluation for glutinous rice germplasm based on agronomic traits. Crop Environ Bioinform, 2005, 2: 11-30



[25]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan DL, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 43: 961-969



[26]Veasey E A, Silva E F da, Schammass E A, Oliveira G C X, Ando A. Morphoagronomic genetic diversity in American wild rice species. Braz Arch Biol Technol, 2008, 51: 95-104



[27]Li Z-C(李自超), Zhang H-L(张洪亮), Zeng Y-W(曾亚文), Shen S-Q(申时全), Sun C-Q(孙传清), Wang X-K(王象坤). Studies on phenotypic diversity of rice germplasm in Yunnan, China. Acta Agron Sin (作物学报), 2001, 27(6): 832-837 (in Chinese with English abstract)



[28]Hien N L, Sarhadi W A, Oikawa Y, Hirata Y. Genetic diversity of morphological responses and the relationships among Asia aromatic rice (Oryza sativa L.) cultivars. Tropics, 2007, 16: 343-355



[29]Agrama H A, Yan W G, Jia M, Fjellstrom R, McClung A M. Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci, 2010, 2: 247-291



[30]IRRI (International Rice Research Institute) and IBPGR (International Board for Plant Genetic Resources). Characteristics for Rice (Oryza sativa L.) IBPGR-IRRI Rice Advisory Committee, Manila, the Philippines, 1980



[31]Nei M. Molecular Population Genetics and Evaluation. Amsterdam, Oxford: North-Holland Publishing Company, 1975



[32]Campbell D R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Ann Bot, 2009, 103: 1557-1566



[33]Soleri D, Cleveland D A. Farmer selection and conservation of crop varieties. In: Goodman R M ed. Encyclopedia of Plant and Crop Science. Marcel Dekker, New York: Marcel Dekker Incorporated, 2004. pp 433-438



[34]Yan W G, Agrama H, Jia M, Fjellstrom R, McClung A. Geographic description of genetic diversity and relationships in the USDA rice world collection. Crop Sci, 2010, 50: 2406-2417



[35]Molina J, Sikora M, Garud N, Flowers J M, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal B A, Bustamante C D, Boyko A R, Purugganan M D. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA, 2011, 108: 8351-8356



[36]Vaughan D A, Lu B R, Tomooka N. The evolving story of rice evolution. Plant Sci, 2008, 174: 394-408



[37]Purugganan M D. The evolution of rice: molecular vignettes on its origins and spread. Archaeol Anthropol Sci, 2010, 2: 61-68



[38]Cao Q J, Lu B R, Xia H, RJ, Sala F, Spada A, Grassi F. Genetic Diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers. Ann Bot, 2006, 98: 1241-1252



[39]Yan W G, Dilday R H, Tai T H, Gibbons J W, McNew R W, Rutger J N. Differential response of rice germplasm to straighthead induced by arsenic. Crop Sci, 2005, 45:1223-1228



[40]Yan W G, Li Y, Agrama H A, Luo D, Gao F, Lu X, Ren G. Association mapping of stigma and spikelet characteristics. Mol Breed, 2009, 24: 277-292



[41]Jia L M, Yan W G, Agrama H A, Yeater K, Li X B, Hu B L, Moldenhauer K, McClung A, Wu D X. Searching for germplasm resistant to sheath blight from the USDA rice core collection. Crop Sci, 2011, 51: 1507-1517

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[3] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[4] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[5] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[6] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[7] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[8] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[9] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[10] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[11] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[12] 闫彩霞,王娟,张浩,李春娟,宋秀霞,孙全喜,苑翠玲,赵小波,单世华. 基于表型性状构建中国花生地方品种骨干种质[J]. 作物学报, 2020, 46(4): 520-531.
[13] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[14] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[15] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!