欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 904-908.doi: 10.3724/SP.J.1006.2012.00904

• 研究简报 • 上一篇    下一篇

OsBTF3基因在水稻光合作用和生长发育中的功能

李广旭1,2,陈华民1,吴茂森1,何晨阳1,*   

  1. 1 中国农业科学院植物保护研究所 / 植物病虫害生物学国家重点实验室,北京100193;2 辽宁省农业科学院果树研究所,辽宁熊岳115009
  • 收稿日期:2011-09-13 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 何晨阳, E-mail: cyhe@caas.net.cn, Tel: 010-62894147
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2009ZX08009-044B, 2008ZX08001-002)资助。

Functions of OsBTF3 Gene in Regulation of Photosynthesis, Growth and Development in Rice

LI Guang-Xu1,2,CHEN Hua-Min1,WU Mao-Sen1,HE Chen-Yang1,*   

  1. 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; 2 Institute of Pomology, Liaoning Academy of Agricultural Sciences, Xiongyue 115009, China
  • Received:2011-09-13 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 何晨阳, E-mail: cyhe@caas.net.cn, Tel: 010-62894147

摘要: 为了揭示转录因子OsBTF3在水稻生长发育中的功能,比较分析了OsBTF3过量表达和RNAi转基因水稻T1代株系叶片生长和株型发育的表型。结果表明,与野生型对照株相比,过量表达株系在叶绿素含量、叶绿体数量、光合速率、叶片大小、株高、节间长方面显著增加或增强; 而RNAi株系的明显降低或减弱。OsBTF3基因的增量或减量表达显著影响水稻光合作用、叶片生长和株型发育。说明OsBTF3在水稻生长发育中具有重要调控功能,可能在水稻转基因分子育种方面具有潜在的应用价值。

关键词: 水稻, OsBTF3, 转基因, 光合作用, 生长发育

Abstract: To reveal the regulatory roles of transcription factor OsBTF3 in growth and development of rice, we comparably analyzed the growth and development of the transgenic rice with over-expressed or RNAi-silenced OsBTF3 gene. Results showed that significant increases in chlorophyll content, chloroplast number, photosynthetic rate, leaf size, plant heights and stem internode length were found in T1 generation of transgenic rice lines with the over-expressed gene compared to wild-type control plants, while remarkable decreases in above phenotypes were observed in plants with the RNAi-silenced gene. Over-expression or silencing of transgene OsBTF3 in rice resulted in significant changes in photosynthesis, growth and development of rice. Therefore, OsBTF3 functions as a key regulator in growth and development, and might be potentially used in molecular breeding of rice for improving agronomic traits.

Key words: Rice, OsBTF3, Transgenic, Photosynthesis, Growth and development

[1]Zheng X M, Moncollin V, Egly J M, Chambon P. A general transcription factor forms a stable complex with RNA polymerase B (II). Cell, 1987, 50: 361–368

[2]Wiedmann B, Sakai H, Davis T A, Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature, 1994, 370: 434–440

[3]Lauring B, Kreibich G, Wiedmann M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent polypeptide-associated complex. Proc Natl Acad Sci USA, 1995, 92: 9435–9439

[4]Yang K S, Kim H S, Jin U H, Lee S S, Park J A, Lim Y P, Pai H S. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta, 2007, 225: 1459–1469

[5]Möller I, Beatrix B, Kreibich G, Sakaic H, Lauringa B, Wiedmann M. Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett, 1998, 441: 1–5

[6]Deng J M, Behringer R R. An insertional mutation in the BTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res, 1995, 4: 264–269

[7]Bloss T A, Witze E S, Rothman J H. Suppression of CED-3-independent apoptosis by mitochondrial beta-NAC in Caenorhabditis elegans. Nature, 2003, 424: 1066–1071

[8]Cooper B, Hutchison D, Park S, Guimil S, Luginbühl P, Ellero C, Goff S A, Glazbrook J. Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Mol Biol, 2003, 53: 273–279

[9]Freire M A. Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene, 2005, 345: 271–277

[10]Wu M-S(吴茂森), Tan F(田峰), Qi F-J(齐放军), He C-Y(何晨阳). cDNA-AFLP analysis of gene expression response to Xanthomonas oryzae pv. oryzae and identification of genes expressed differentially during this compatible interaction in rice suspension cultured cells. Sci Agric Sin (中国农业科学), 2007, 40(2): 277–282 (in Chinese with English abstract)

[11]Li G-X(李广旭), Wu M-S(吴茂森), Wu J(吴静), He C-Y(何晨阳). Molecular characterization and expression of OsBTF3, a rice gene up-regulated by Xanthomonas oryzae pv. oryzae. Sci Agric Sin (中国农业科学), 2009, 42(7): 2608–2614 (in Chinese with English abstract)

[12]Li G-X(李广旭), Wu M-S(吴茂森), He C-Y(何晨阳). Gene expression response of transcription factor OsBTF3 in rice to bacterial and fungal infection and signal molecule treatment revealed by quantitative real-time PCR analysis. Acta Phytopathol Sin (植物病理学报), 2009, 39(3): 272–277 (in Chinese with English abstract)

[13]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989

[14]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method. Methods, 2001, 25: 402–408

[15]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15

[16]Sato Y, Sentoku N, Miura Y. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J, 1999, 18: 992–1002

[17]Ogi Y. The effects on culm and other agronomic characters caused by semi-dwarfing genes at the sd-locus in rice. Jpn J Breed, 1993, 43: 267–275
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!