欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 921-927.doi: 10.3724/SP.J.1006.2012.00921

• 研究简报 • 上一篇    下一篇

水稻籽粒蛋白双向电泳条件的优化及其蛋白组学方法的比较

李奇松,陈军,林世圣,李忠,张志兴,林文雄*   

  1. 福建农林大学生命科学学院农业生态研究所 / 福建农林大学作物生理与分子生态重点实验室, 福建福州 350002
  • 收稿日期:2011-07-08 修回日期:2011-12-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 林文雄, E-mail: lwx@fjau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871494), 教育部博士点基金(200803890006), 福建省自然科学基金(2007J0304, 2008J0042)和福建省重点学科经费资助。

Optimization of Two-dimensional Electrophoresis Condition for Rice Grain Protein and Comparison of Relevant Proteomic Methods

LI Qi-Song,CHEN Jun,LIN Shi-Sheng,LI Zhong,ZHANG Zhi-Xing,LIN Wen-Xiong*   

  1. Institute of Agricultural Ecology, School of Life Sciences, Fujian Agriculture and Forestry University / Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2011-07-08 Revised:2011-12-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 林文雄, E-mail: lwx@fjau.edu.cn

摘要: 探讨适用于籽粒蛋白组学研究的策略,对深入研究籽粒的发育过程具有重要的意义。本文对比了3种不同的蛋白提取方法,优化了双向电泳中自制管胶一向的等电聚焦条件和IPG干胶条一向的等电聚焦时间,以MALDI-TOF/MS、Western-blot和磷酸化蛋白组学3个重要的蛋白质组学研究方法对胶内蛋白质鉴定分析。结果表明,可溶性蛋白提取法最适用于籽粒蛋白组学的研究; 电泳条件优化后,得到了较优的2-DE图谱; 胶内蛋白点适用于质谱分析、蛋白表达量验证(Western-blot)及籽粒蛋白的磷酸化组学的研究。本研究为下一步在蛋白组水平上分析籽粒发育提供了技术支持。

关键词: 水稻, 籽粒, 蛋白组学, 双向电泳, 蛋白磷酸化

Abstract: A suitable proteomic strategy for rice grain protein research is important for further understanding rice grain development at proteome level. In this study, three different protein extraction methods were compared and then electrophoretic conditions of hand-made gel lands and IPG lands in IEF (isoelectric focusing) were optimized. Furthermore, three important proteomic research strategies (MALDI-TOF/MS, western-blot and phosphoproteome) were used for identification and analysis of in-gel proteins. The results showed that the method of soluble protein extraction was most suitable for investigation of grain proteomics, with a well-distributed 2-DE gel profile under optimized electrophoretic conditions, and it was confirmed that MALDI-TOF/MS, western-blot and phosphoproteome were the three suitable methods for the analysis of in-gel proteins. The establishment of the suitable system for rice grain proteomic research paves the way for the next step to further analyse rice grain development at proteome level.

Key words: Rice, Grain filling, Proteomics, Two-dimensional electrophoresis, Protein phosphorylation

[1]Teng Z-H(滕中华), Zhi L(智丽), Lü J(吕俊), Zong X-F(宗学凤), Wang S-G(王三根), He G-H(何光华). Effects of high temperature on photosynthesis characteristics, phytohormones and grain quality during filling-periods in rice. Acta Ecol Sin (生态学报), 2010, 30(23): 6504–6511 (in Chinese with English abstract)

[2]Yang J-C(杨建昌), Wang G-Z(王国忠), Wang Z-Q(王志琴), Liu L-J(刘立军), Zhu Q-S(朱庆森). Grain-filling characteristics and changes of hormonal content in the grains of dry-cultivated rice during grain-filling. Acta Agron Sin (作物学报), 2002, 28(5): 615–621 (in Chinese with English abstract)

[3]Wang H-Z(王贺正), Ma J(马均), Li X-Y(李旭毅), Zhang R-P(张荣萍). Effects of water stress on grain filling and activities of enzymes involved in starch synthesis in rice. Sci Agric Sin (中国农业科学), 2009, 42(5): 1550–1558 (in Chinese with English abstract)

[4]Zhu T, Budworth P, Chen W. Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J, 2003, 1: 59–70

[5]Wan X Y, Liu J Y. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol & Cell Proteomics, 2008, 7: 1469–1488

[6]Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837

[7]Houston N L, Hajduch M, Thelen J J. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol, 2009, 151: 857–868

[8]Roccoa M, Corradob G, Arenac S, Ambrosioc C D, Tortiglioneb C, Sellarolid S, Marrad M, Raob R, Scalonic A. The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. J Proteomics, 2008, 71: 176–185

[9]Agrawal G K, Thelen J J. Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics, 2006, 5: 2044–2059

[10]Sheng B X, Tang L, Zhu Y D, Kang C, Yongbiao X, Tai W. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol, 2008, 148: 908–925

[11]Wang J-Y(王经源), Chen S-Y(陈舒奕), Liang Y-Y(梁义元), Lin W-X(林文雄). Improvement of ISO-DALT electrophoresis system. J Fujian Agric & For Univ (福建农林大学学报), 2006, 35(2): 187–190 (in Chinese with English abstract)

[12]Dumas-Gaudot E, Amiour N, Weidmann S, Bestel-Corre G, Valot S, Lenogue B, Gianinazzi-Pearsonl V, Gianinazzi S. A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root–fungus interactions. Proteomics, 2004, 4: 451–453

[13]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685

[14]Blum H, Beiers H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 1987, 8: 93–99

[15]Peng X X, Ye X T, Wang S Y. Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine, 2004, 22: 2750–2756

[16]Meng H(孟慧), Duan C-F(段翠芳), Zeng R-Z(曾日中). Researches of Plant Proteomics. China J Trop Agric (热带农业科学), 2006, 26(2): 60–64 (in Chinese with English abstract)

[17]Saravanan R S, Rose J K C. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004, 4: 2522–2532

[18]Zhen Y(甄艳), Shi J-S(施季森). Application of mass spectrometry in proteomics studies. J Nanjing For Univ (南京林业大学学报), 2011, 35(1): 103–108 (in Chinese with English abstract)

[19]Cohen P. The origins of protein phosphorylation. Nat Cell Biol, 2002, 4: E127–E130
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!