作物学报 ›› 2012, Vol. 38 ›› Issue (05): 921-927.doi: 10.3724/SP.J.1006.2012.00921
李奇松,陈军,林世圣,李忠,张志兴,林文雄*
LI Qi-Song,CHEN Jun,LIN Shi-Sheng,LI Zhong,ZHANG Zhi-Xing,LIN Wen-Xiong*
摘要: 探讨适用于籽粒蛋白组学研究的策略,对深入研究籽粒的发育过程具有重要的意义。本文对比了3种不同的蛋白提取方法,优化了双向电泳中自制管胶一向的等电聚焦条件和IPG干胶条一向的等电聚焦时间,以MALDI-TOF/MS、Western-blot和磷酸化蛋白组学3个重要的蛋白质组学研究方法对胶内蛋白质鉴定分析。结果表明,可溶性蛋白提取法最适用于籽粒蛋白组学的研究; 电泳条件优化后,得到了较优的2-DE图谱; 胶内蛋白点适用于质谱分析、蛋白表达量验证(Western-blot)及籽粒蛋白的磷酸化组学的研究。本研究为下一步在蛋白组水平上分析籽粒发育提供了技术支持。
[1]Teng Z-H(滕中华), Zhi L(智丽), Lü J(吕俊), Zong X-F(宗学凤), Wang S-G(王三根), He G-H(何光华). Effects of high temperature on photosynthesis characteristics, phytohormones and grain quality during filling-periods in rice. Acta Ecol Sin (生态学报), 2010, 30(23): 6504–6511 (in Chinese with English abstract)[2]Yang J-C(杨建昌), Wang G-Z(王国忠), Wang Z-Q(王志琴), Liu L-J(刘立军), Zhu Q-S(朱庆森). Grain-filling characteristics and changes of hormonal content in the grains of dry-cultivated rice during grain-filling. Acta Agron Sin (作物学报), 2002, 28(5): 615–621 (in Chinese with English abstract)[3]Wang H-Z(王贺正), Ma J(马均), Li X-Y(李旭毅), Zhang R-P(张荣萍). Effects of water stress on grain filling and activities of enzymes involved in starch synthesis in rice. Sci Agric Sin (中国农业科学), 2009, 42(5): 1550–1558 (in Chinese with English abstract)[4]Zhu T, Budworth P, Chen W. Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J, 2003, 1: 59–70[5]Wan X Y, Liu J Y. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol & Cell Proteomics, 2008, 7: 1469–1488[6]Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837[7]Houston N L, Hajduch M, Thelen J J. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol, 2009, 151: 857–868[8]Roccoa M, Corradob G, Arenac S, Ambrosioc C D, Tortiglioneb C, Sellarolid S, Marrad M, Raob R, Scalonic A. The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. J Proteomics, 2008, 71: 176–185[9]Agrawal G K, Thelen J J. Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics, 2006, 5: 2044–2059[10]Sheng B X, Tang L, Zhu Y D, Kang C, Yongbiao X, Tai W. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol, 2008, 148: 908–925[11]Wang J-Y(王经源), Chen S-Y(陈舒奕), Liang Y-Y(梁义元), Lin W-X(林文雄). Improvement of ISO-DALT electrophoresis system. J Fujian Agric & For Univ (福建农林大学学报), 2006, 35(2): 187–190 (in Chinese with English abstract)[12]Dumas-Gaudot E, Amiour N, Weidmann S, Bestel-Corre G, Valot S, Lenogue B, Gianinazzi-Pearsonl V, Gianinazzi S. A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root–fungus interactions. Proteomics, 2004, 4: 451–453 [13]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685[14]Blum H, Beiers H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 1987, 8: 93–99[15]Peng X X, Ye X T, Wang S Y. Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine, 2004, 22: 2750–2756[16]Meng H(孟慧), Duan C-F(段翠芳), Zeng R-Z(曾日中). Researches of Plant Proteomics. China J Trop Agric (热带农业科学), 2006, 26(2): 60–64 (in Chinese with English abstract)[17]Saravanan R S, Rose J K C. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004, 4: 2522–2532[18]Zhen Y(甄艳), Shi J-S(施季森). Application of mass spectrometry in proteomics studies. J Nanjing For Univ (南京林业大学学报), 2011, 35(1): 103–108 (in Chinese with English abstract)[19]Cohen P. The origins of protein phosphorylation. Nat Cell Biol, 2002, 4: E127–E130 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|