作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1443-1451.doi: 10.3724/SP.J.1006.2012.01443
王为1,2**,王长彪3,** ,刘方1,陈浩东1,4,王林1,王春英1,张香娣1,王玉红1,王坤波1*
WANG Wei1,2,**,WANG Chang-Biao3,**,LIU Fang1,CHEN Hao-Dong1,4,WANG Lin1,WANG Chun-Ying1,ZHANG Xiang-Di1,WANG Yu-Hong1,WANG Kun-Bo1,*
摘要: 利用Clustal X等软件对公共数据库现有的393 753条棉花EST序列分析,得到349 815条非冗余EST序列,借助自主开发的SSRmine软件共发掘SSR位点11 372个,分布于10 507条EST中,EST-SSR的频率是3%,平均相隔21 kb出现一个SSR。在2~6 bp的重复基元中,三核苷酸和六核苷酸分别占34.1%、40.6%,二、三、四、五和六核苷酸基序分别以AG/CT、AAG/CTT、AAAT/ATTT、AAAAG/CTTTT和AAAAAG/CTTTTT的类型最多。利用去冗余的且在亚洲棉、陆地棉、海岛棉中没有被开发过的410条EST序列设计开发了200对非冗余性SSR引物,利用自主开发的SSRD软件通过SSR引物序列下载、预处理、Blastn、提取相似性分值≥81%的引物编号、提取引物冗余对、冗余引物写成一行等6个步骤去除来源于自身部分同源序列以及与CMD释放的不同棉种相似性SSR引物,得到了非相似性引物,定名为CRIXXX (CRI即Cotton Research Institute)。并分别选用棉花12个种的代表性材料对其中100对进行引物功效评价,包括多态信息含量(polymorphism information content, PIC)及引物通用性研究。结果显示,从自主开发的100对SSR引物筛选出56对均能在12份材料间扩增出稳定明显的条带, 其中多态性引物35对,多态率占35%。引物的PIC变幅为0.097~0.888,平均为0.482;1对海岛棉EST-SSR引物在12份材料间的通用性为100%,25对亚洲棉引物通用性为81%,74对陆地棉引物通用性为80.1%。
[1]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527-541[2]Yu Y, Yuan D J, Liang S G, Li X M, Wang X Q, Lin Z X, Zhang X L. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics, 2011, 12: 15[3]Shen X L, Guo W Z, Zhu X F, Yuan Y L Kohel R J, Zhang T Z. Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed, 2005, 15: 169-181[4]Liu R Z, Wang B H, Guo W Z, Qin Y S, Wang L G, Zhang Y M, Zhang T Z. Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed, 2011, DOI: 10.1007/s11032-011-9547-0[5]Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res, 2007, 17: 243-251[5]Yang C, GuoW Z, Li G Y, Gao F, Lin S S, Zhang T Z. QTLs mapping for verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci, 2008, 174: 290-298[6]Dong C G, Ding Y Z, Guo W Z, Zhang T Z. Fine mapping of the dominant glandless gene G l 2e in Sea island cotton (Gossypium barbadense L.). Chin Sci Bull, 2007, 52: 3105-3109[7]Qian N, Zhang X W, Guo W Z, Zhan T Z. Fine mapping of open bud duplicate genes in homoelogous chromosomes of tetraploid cotton. Euphytica, 2009, 165: 325-331[8]Zhao L, Cai C P, Zhang T Z, Guo W Z. Fine mapping of the red plant gene R1 in upland cotton (Gossypium hirsutum). Chin Sci Bull, 2009, 54(9): 1529-1533[9]Gao W(高伟), Liu F(刘方), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣), Wang Y-H(王玉红), Wang K-B(王坤波). Genetic diversity of allotetraploid cotton based on SSR markers. Acta Agron Sin (作物学报), 2010, 36(11): 1902-1909 (in Chinese with English abstract)[10]Scott K D, Eggler P, Seaton G, Rossetto M, Ablett E M,. Lee S L, Henry R J. Analysis of SSRs derived from grape ESTs. Theor Appl Genet, 2000, 100: 723-726[11]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123[12]Eujayl I, Sorrells M E, Baum M. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399-407[13]Hackauf B, Wehling P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed, 2002, 121: 17-25[14]Thiel T, Michalek W, Varshney R K. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet, 2003, 106: 411-422[15]Peng J H, Nore L, Lapitan V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genom, 2005, 5: 80-96[16]Feingold S, Lloyd J, Norero N. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet, 2005, 111: 456-466[17]Chen X-Y(陈相艳), Li W(李伟), Dai H-Y(戴海英), Zhang L-F(张礼凤). Analysis of SSR Information in EST Resource of Soybean (Glycine max). Soybean Sci (大豆科学), 2009, 28(3): 394-399 (in Chinese with English abstract)[18]An Z-W(安泽伟), Zhao Y-H(赵彦宏), Cheng H(程汉), Li W-G(李维国), Huang H-S(黄华孙). Development and application of EST-SSR markers in Hevea brasiliensis Muell. Arg. Hereditas (遗传), 2009, 31(3): 311-319 (in Chinese with English abstract)[19]Wei L-B(魏利斌), Zhang H-Y(张海洋), Zheng Y-Z(郑永战), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Development and utilization of EST-derived microsatellites in sesame (Sesamum indicum L.). Acta Agron Sin (作物学报), 2008, 34(12): 2077-2084 (in Chinese with English abstract)[20]Xu Z-L(徐照龙), Yi J-X(易金鑫), Yu G-H(余桂红), Zhang D-Y(张大勇), He X-L(何晓兰), Wang X-E(王秀娥), Ma H-X(马鸿翔). EST-SSR based genetic diversity analysis on salt tolerant plants from six species in Chenopodiaceae. J Plant Genet Resour (植物遗传资源学报), 2011, 12(1): 113-120 (in Chinese with English abstract)[21]Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genom, 2004, 272: 308-327[22]Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439[23]Wang C B, Guo W Z, Cai C P, Zhang T Z. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 21(3): 316-320[24]Yu Y(余渝), Wang Z-W(王志伟), Feng C-H(冯常辉), Zhang Y-X(张艳欣), Lin Z-X(林忠旭), Zhang X-L(张献龙). Genetic Evaluation of EST-SSRs Derived from Gossypium herbaceum. Acta Agron Sin (作物学报), 2008, 34(12): 2085-2091 (in Chinese with English abstract)[25]Zhang P-P(张培培), Wang X-Q(王夏青), Yu Y(余杨), Yu Y(余渝), Lin Z-X(林忠旭), Zhang X-L(张献龙). Isolation, characterization, and mapping of genomic microsatellite markers for the first time in sea-island cotton (Gossypium barbadense). Acta Agron Sin (作物学报), 2009, 35(6): 1013-1020 (in Chinese with English abstract)[26]Lü Y D, Cai C P, Wang L, Lin S Y, Zhao L, Tian L L, Lü J H, Zhang T Z, Guo W Z. Mining, characterization and exploitation of EST-derived microsatellites in Gossypium barbadense. Chin Sci Bull, 2010, 55, DOI: 10.1360/s11434-010-3230-4[27]Song G-L(宋国立), Cui R-X(崔荣霞), Wang K-B(王坤波), Guo L-P(郭立平), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣). A rapid improved CTAB method for extraction of cotton genomic. Acta Gossypii Sin (棉花学报), 1998, 10(5) 273-275 (in Chinese with English abstract)[28]Zhang J(张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of microsatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin (棉花学报), 2000, 12(5): 267-269 (in Chinese with English abstract)[29]Bassamb J, Caetano-Anoles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-83[30]GuoW Z, Wang W, Zhou B L, Zhang T Z. Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet, 2006, 112: 1573-1581[31]Zhang W(张伟), Liu F(刘方), Li S-H(黎绍惠), Wang W(王为), Wang C-Y(王春英), Zhang X-D(张香娣), Wang Y-H(王玉红), Song G-L(宋国立), Wang K-B(王坤波). QTL analysis on yield and its components in upland cotton RIL. Acta Agron Sin (作物学报), 2011, 37(3): 433-442 (in Chinese with English abstract)[32]Qin H D, Guo W Z, Zhang Y M, Zhang T Z. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet, 2008, 117: 883-894[33]Zhu H Y, Han X Y, Lü J H, Zhao L, Xu X Y, Zhang T Z, Guo W Z. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum. BMC Plant Biol, 2011, 11: 40[34]Cardle L, Ratnsay L, Milbourne D. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847-854[35]Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res, 2000, 10: 72-80[36]Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet, 1980, 32: 314-331[37]Adams K L, Cronn R, Percifield R. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA, 2003, 100: 4649-4654[38]Wendel J F. New World cottons contain Old World cytoplasm. Proc Natl Acad Sci USA, 1989, 86: 4132-4136 |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[8] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[9] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[10] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[11] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[12] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[13] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[14] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[15] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
|