作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2122-2130.doi: 10.3724/SP.J.1006.2012.02131
夏家平,郭会君,谢永盾,赵林姝,古佳玉,赵世荣,李军辉,刘录祥*
XIA Jia-Ping,GUO Hui-Jun,XIE Yong-Dun,ZHAO Lin-Shu,GU Jia-Yu,ZHAO Shi-Rong,LI Jun-Hui,LIU Lu-Xiang*
摘要:
小麦叶绿素缺失突变体Mt135自交后代稳定表现绿株、条纹株和白化株3种类型, 其中条纹株白色组织和白化株的叶绿体数目和结构发生突变, 完全失去光合能力。为研究该突变体叶绿体基因表达与光合作用的关系, 采用实时荧光定量PCR技术, 分析了白化株和条纹株的叶绿体基因表达。在白化株中共检测到40个差异表达基因, 涉及4类功能(编码光反应相关蛋白、编码叶绿体内能量代谢相关酶、核糖体合成和tRNA合成), 包括18个上调表达和22个下调表达基因;在条纹株中共检测到13个上调表达基因, 其表达变化趋势与在白化株中一致。白化株的差异表达基因中, 编码光系统II、I结构蛋白的psb、psa及ycf等基因家族的基因表达量显著下调;多个编码核糖体蛋白大、小亚基的基因表达量改变, 尤其是核糖体蛋白小亚基编码基因rps14和23S rRNA的编码基因23S rDNA表达量显著下调。推测Mt135突变性状与参与光反应相关蛋白的编码基因、叶绿体内能量代谢相关酶的编码基因、核糖体合成相关基因以及tRNA合成相关基因表达量的改变密切相关。
[1]Zhang L-K(张力科), Li Z-B(李志彬), Liu H-Y(刘海燕), Li R-H(李如海), Chen M-Y(陈满元), Chen A-G(陈爱国), Qian Y-L(钱益亮), Hua Z-T(华泽田), Gao Y-M(高用明), Zhu L-H(朱苓华), Li Z-K(黎志康). Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin (中国农业科学), 2010, 43(2): 223-229 (in Chinese with English abstract)[2]Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130: 133-138[3]Cheng H-L(程红亮), Chen J-F(陈甲法), Ding J-Q(丁俊强), Wu Y-J(吴建宇). Genetic analysis and gene mapping of a leaf mutant in maize. Acta Agric Boreali-Sin (华北农学报), 2011, 26(3): 7-10 (in Chinese with English abstract)[4]Jiang Y(江媛), He Y(何筠), Fan S-L(范术丽), Yu J-N(俞嘉宁), Song M-Z(宋美珍).The identification and analysis of RNA editing sites of 10 chlooroplast protein-coding genes from virescent mutant of Gossypium hirstum. Cotton Sci (棉花学报), 2011, 23(1): 3-9 (in Chinese with English abstract)[5]Sun J-Y(孙捷音), Zhang N-H(张年辉), Du L-F(杜林方). Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529. Acta Bot Boreail-Occident Sin (西北植物学报), 2007, 27(10): 1962-1966 (in Chinese with English abstract)[6]Lin H-H(林宏辉), Du L-F(杜林方), Jia Y-J(贾勇炯), Liang H-G(梁厚果), Tang Z-H(汤泽生). Isolation and comparison of thylakoid membarenes pigment-proteins from wile type an dmutant barley. Acta Bot Boreal-Occident Sin (西北植物学报), 1997, 17(1): 34-38 (in Chinese with English abstract)[7]Huang X-Q(黄晓群), Zhao X-H(赵海新), Dong C-L(董春林), Sun Y-Y(孙业盈), Wang P-R(王平荣), Deng X-J(邓晓建). Chlorophyll-deficit rice mutants and their research advances in biology. Acta Bot Boreali-Occid Sin (西北植物学报), 2005, 25(8): 1685-1691 (in Chinese with English abstract)[8]Zhong H-B(赵洪兵), Guo H-J(郭会君), Zhao L-S(赵林姝), Gu J-Y(古佳玉), Zhao S-R(赵世荣), Li J-H(李军辉), Liu L-X(刘录祥). A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis. J Nucl Agric Sci (核农学报), 2010, 24(6): 1110-1116 (in Chinese with English abstract)[9]Hou D Y, Xu H, Du G Y, Lin J T, Duan M, Guo A G. Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (Triticum aestivum L.) FA85. BMB Rep, 2009, 42: 450-455[10]Wang B-L(王保莉), Guo A-G(郭蔼光), Wang P-H(汪沛洪). Changes of chlorophyll metabolism during the albino stage of a winter mutant. Acta Bot Sin (植物学报), 1996, 38(7): 557-562 (in Chinese with English abstract) [11]Yang L(杨莉), Guo A-G(郭蔼光), Guan X(关旭). Studies on the chloroplast ultrastructure of “stage albinism line the winter wheat” (SA) mutant during the albescent period. Acta Agric Boreali-Occid Sin (西北农业学报), 2003, 12(4): 64-67 (in Chinese with English abstract)[12]Su X-J(苏小静), Wang P-H(汪沛洪), Wang Y-J(王永吉), Li P-G(李丕皋), Feng R-M(封如敏). Studies on the mechanism of albino characteristic of winter wheat mutant “the albinism line”: Ⅳ. Primary studies on the changes of transpiration, photosynthesis and respiration at albino stage. Acta Univ Agric Boreali-Occident (西北农业大学学报), 1996, 24(1): 41-44 (in Chinese with English abstract)[13]Iwai M, Suzuki T, Dohmae N, Inoue Y, Ikeuchi M. Absence of the PsbZ subunit prevents association of PsbK and Ycf12 with the PSII complex in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Plant Cell Physiol, 2007, 48: 1758-1763[14]Kashino Y, Takahashi Takeshi, Inoue-Kashino N, Ban A, Ikeda Y, Satoh K, Sugiura Miwa. Ycf12 is a core subunit in the photosystem II complex. Biochim Biophys Acta, 2007, 1767: 1269-1275[15]Toshiharu S, Katsumi S, Katsumi U, Yoshiki N, Tsuneyoshi K, Takashi H. The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol, 2001, 42: 264-273[16]Rogalski M, Schottler M A, Thiele W, Schulze W X, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell, 2008, 20: 2221-2237[17]Siniauskaya M, Naydenov N, Davydenko O, Nakamura C. Macroarray for studying chloroplast gene expression profiles associated with the initial development of wheat. In: Rudi A, Russell E, Evans L, Peter L, Michael M L, eds. Proceedings of the 11th International Wheat Genetics Symposium. Sydney University Press, 2008. pp 1-3[18]Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol, 2002, 19: 2084-2091[19]Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Gen Genomics, 2002, 266: 740-746[20]Zhao H B, Guo H J, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu L X. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin, 2011, 37: 119-126[21]Zhao H-B(赵洪兵). Studies on chlorophyll-deficent wheat mutant induced by spaceflight environment. MS Thesis of Chinese Academy of Agricultural Sciences, 2010. pp 41-42 (in chinese with English abstract)[22]Vandesompele J, Katleen D P, Filip P, Bruce P, Nadine V R, Anne D P, Frank S. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3: research 0034.1-0034.11, DOI: 10.1186/gb-2002-3-7-research0034[23]Gutierrez R A, Stokes T L, Thum K, Xu X, Obertello M, Katari M S, Tanurdzic M, Dean A, Nero D C, Mcclung C R, Coruzzi G M. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA, 2008, 105: 4939-4944[24]Brunner S, Hurni S, Herren G, Kalinina O, von Burg S, Zeller S L, Schmid B, Winzeler M, Keller B. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotech J, 2011, 9: 897-910[25]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408[26]Allen J F, Wilson B M, Puthiyaveetil S, Nield J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci, 2011, 16: 645-655[27]Pakrasi H B. Genetic analysis of the form and function of photosystem I and photosystem II. Annu Rev Genet, 1995, 29: 755-776[28]Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J D. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J, 1997, 16: 6095-6104[29]Wang Y X, Suo B, Zhao T F, Qu X F, Yuan L G, Zhao X J. Zhao H J. Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage under drought stress and rewatering. Acta Physiol Plant, 2011, 33: 1923-1932[30]Iwai M, Suzuki T, Kamiyama A, Sakurai I, Dohmae N, Inoue Y, Ikeuchi M. The PsbK subunit is required for the stable assembly and stability of other small subunits in the PSII complex in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Plant Cell Physiol, 2010, 51: 554-560[31]Umate P, Schwenkert S, Karbat I, Dal Bosco C, Mlcòchová L, Volz S, Zer H, Herrmann R G, Ohad I, Meurer J. Deletion of PsbM in tobacco alters the QB site properties and the electron flow within photosystem II. J Biol Chem, 2007, 282: 9758-9676[32]Iwai M, Katoh H, Katayama M, Ikeuchi M. PSII-Tc protein plays an important role in dimerization of photosystem II. Plant Cell Physiol, 2004, 45: 1809-1816[33]Monde R A, Greene J C, Stern D B. Disruption of the petB-petD intergenic region in tobacco chloroplasts affects petD RNA accumulation and translation. Mol Gen Genet, 2000, 263: 610-618[34]Mäenpää P, Gonzalez E B, Chen L, Khan M S, Gray J C, Aro E M. The ycf 9 (orf 62) gene in the plant chloroplast genome encodes a hydrophobic protein of stromal thylakoid membranes. J Exp Bot, 2000, 51(GMP Special Issue): 375-382[35]Swiatek M, Kuras R, Sokolenko A, Higgs D, Olived J, Cinquee G, Müllera B, Eichackera L A, Sternc D B, Bassie R, Herrmanna R G, Wollman F A. The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell, 2001, 13: 1347-1368[36]Ashby M K, Houmard J, Mullineaux C W. The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolution. FEMS Microbiol Lett, 2002, 214: 25-30[37]Peter E, Wallner T, Wilde A, Grimm B. Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. J Plant Physiol, 2011, 168: 1380-1386[38]Yamori W, Takahashi S, Makino A, Price G D, Badger M R, Susanne V C. The roles of ATP synthase and the cytochrome b6/f complexes in limiting chloroplast electron transport and determining photosynthetic capacity. Plant Physiol, 2010, 155: 956-962[39]Shen H, Walters D E, Mueller D M. Introduction of the chloroplast redox regulatory region in the yeast ATP synthase impairs cytochrome c oxidase. J Biol Chem, 2008, 283: 32937-32943[40]Kuroda H, Maliga P. The plastid clpP1 protease gene is essential for plant development. Nature, 2003, 425: 86-89 [41]Rogalski M, Ruf S, Bock R. Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucl Acids Res, 2006, 34: 4537-4545[42]Fleischmann T T, Scharff L B, Alkatib S, Hasdorf S, Schottler M A, Bock R. Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell, 2011, 23: 3137-3155[43]Santis-Maciossek G D, Kofer W, Bock A, Schoch S, Maier R M, Wanner G, Diger W R, Koop H U, Herrmann R G. Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology biochemistry and ultrastructure. Plant J, 1999, 18: 477-489[44]Allison L A, Simon L D, Maligal P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J, 1996, 15: 2802-2809[45]Rumeau D, Linka N B, Beyly A, Louwagie M, Garin J, Peltier G. New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid ndh complex functioning in higher plants. Plant Cell, 2005, 17: 219-232[46]Wang L Y, Ou-Yang M, Li Q N, Zou M J, Guo J K, Ma J F, Lu C M, Zhang L X, The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. Plant Mol Biol, 2010, 74: 47-59[47]Chi W, Mao J, Li Q N, Ji D L, Zou M J, Lu C M, Zhang L X. Interaction of the pentatricopeptide-repeat protein DELAYED GREENING 1 with sigma factor SIG6 in the regulation of chloroplast gene expression in Arabidopsis cotyledons. Plant J, 2010, 64: 14-25[48]Karaca M, Saha S, Franklin E C, Jenkins J N, Read J J, Percy R G. Molecular and cytological characterization of a cytoplasmic-specific mutant in pima cotton. Euphytica, 2004, 139: 187-197 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|