欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2131-2137.doi: 10.3724/SP.J.1006.2012.02131

• 研究简报 • 上一篇    

我国不同麦区小麦品种的面粉溶剂保持力

张勇1,2,金艳1,张伯桥2,张晓2,徐亮1,徐扬1,程顺和2,*,徐辰武1,*   

  1. 1扬州大学农学院, 江苏扬州225007; 2江苏里下河地区农业科学研究所 / 农业部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州225007
  • 收稿日期:2011-12-28 修回日期:2012-06-30 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 程顺和, E-mail: yzcsh1939@126.com; 徐辰武, E-mail: qtls@yzu.edu.cn
  • 基金资助:

    本研究由江苏省自然科学基金项目(BK2011429), 国家现代农业产业技术体系建设专项(CARS-3-1-1)和国家“十二五”科技支撑计划项目(2011BAD35B03-3)资助。

Solvent Retention Capacities of Varieties from Different Wheat Regions in China

ZHANG Yong1,2,JIN Yan1,ZHANG Bo-Qiao2,ZHANG Xiao2,XU Liang1,XU Yang1,CHENG Shun-He2,*,XU Chen-Wu1,*   

  1. 1Agricultural College of Yangzhou University, Yangzhou 225007, China; 2 Lixiahe Region Institute of Agricultural Sciences of Jiangsu Province / Key Laboratory of Biology and Genetic Improvement in Middle and Lower Yangtze Valley, Ministry of Agriculture, Yangzhou 225007, China
  • Received:2011-12-28 Revised:2012-06-30 Published:2012-11-12 Published online:2012-09-10
  • Contact: 程顺和, E-mail: yzcsh1939@126.com; 徐辰武, E-mail: qtls@yzu.edu.cn

摘要:

溶剂保持力(SRC)是评价软麦品质的一项重要指标。为了解我国不同麦区小麦品种溶剂保持力的差异, 2008—2009和2009—2010生长季测定了181个小麦品种的4种溶剂保持力, 并分析其遗传变异及不同麦区品种SRC特点。结果表明, 4种SRC值在品种、年度和麦区间均差异显著 (P<0.01或P<0.05), 此外, 年份´品种和年份´麦区的互作效应也达显著水平(P<0.01)。主成分分析表明, 仅主成分1的特征值大于1.0, 其对方差的解释率为72.3%;根据主成分综合得分对供试品种聚类, 结果显示各麦区品种SRC值变异明显, 存在不同SRC类型的品种资源, 低SRC品种在长江中下游麦区相对较多, 而中、高SRC品种多分布于黄淮麦区。筛选出阿勃、法展5号、淮麦17、宁麦3号、宁麦6号、皖麦48、选7、扬麦13、扬麦17、郑麦004等低SRC品种, 可用于弱筋小麦品种选育和品质改良。

关键词: 麦区, 小麦, 面粉, 溶剂保持力

Abstract:

Solvent retention capacity (SRC) is an important index for predicting flour functionality in soft wheat, which includes water SRC, 50% lactic acid SRC, 5% sodium carbonate SRC, and 50% sucrose SRC. To understand the SRCcharacter of wheat varieties in China, We measured four types of SRC in 181 varieties from different wheat regions in 2008–2009 and 2009–2010 growing seasons. According to analysis of variance, all types of SRC were significantly influenced by genotype, year, and wheat region (P < 0.01 or 0.05). Besides, the interactions of genotype ´ year and year ´ wheat region were also significant (P < 0.01). The principal component analysis showed that component 1 had initial eigenvalue higher than 1.0, and explained 72.3% of total SRC variance. The result of clustering based on principal score showed that there was obvious variation of SRC among the 181 varieties, and each wheat region contained varieties with different SRC characteristics. The Middle and Low Yangtze Valleys Autumn-Sown Spring Wheat Zone had more genetic resources with low SRC than other wheat regions, and varieties with medium and high SRC were mostly distributed in the Yellow and Huai River Valleys Facultative Wheat Zone. A few varieties with low SRC were selected, including Abbondanza, Fazhang 5, Huaimai 17, Ningmai 3, Ningmai 6, Wanmai 48, Xuan 7, Yangmai 13, Yangmai 17, and Zhengmai 004, which can be used in breeding and quality improvement of weak-strength wheat.

Key words: Wheat region, Wheat, Flour, Solvent retention capacity

[1]Slade L, Levine H. Structure-function relationships of cookie and cracker ingredients. Cereal Chem, 1994, 8l: 261–266



[2]AACC. Approved Methods of the AACC, 10th Edn. American Association of Cereal Chemists, St. Paul, MN, 2000



[3]Gaines C S. Collaborative study of methods for solvent retention capacity profiles. Cereal Food World, 2000, 45: 303–306



[4]Guttieri M J, Souza E. Sources of variation in the solvent retention capacity test of wheat flour. Crop Sci, 2003, 43: l628–l633



[5]Kweon M, Slade L, Levine H. Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes, as well as in wheat breeding: a review. Cereal Chem, 2011, 88: 537–552



[6]Zhang Q-J(张岐军), Zhang Y(张艳), He Z-H(何中虎), Pena R J. Relationship between soft wheat quality traits and cookie quality parameter. Acta Agron Sin (作物学报), 2005, 31(9): 1125–1131 (in Chinese with English abstract)



[7]Ram S, Dawar V, Singh R P, Shoran J. Application of solvent retention capacity tests for the prediction of mixing properties of wheat flour. J Cereal Sci, 2005, 42: 261–266



[8]Walker C, Garland-Campbell K, Carter B, Kidwell K. Using the solvent retention capacity test when breeding wheat for diverse production environments. Crop Sci, 2008, 48: 495–506



[9]Zhang Q-J(张岐军), He Z-H(何中虎), Yan J(阎俊), Qian S-H(钱森和). Application of solvent retention capacity in soft wheat quality evaluation. J Triticeae Crops (麦类作物学报), 2004, 24(4): 140–142 (in Chinese with English abstract)



[10]Yao J-B(姚金保), Souza E, Ma H-X(马鸿翔), Zhang P-P(张平平), Yao G-C(姚国才), Yang X-M(杨学明), Ren L-J(任丽娟), Zhang P(张鹏). Relationship between quality traits of soft red winter wheat and cookie diameter. Acta Agron Sin (作物学报), 2010, 36(4): 695–700 (in Chinese with English abstract)



[11]Xia Y-X(夏云祥), Ma C-X(马传喜), Si H-Q(司红起) , Qiao Y-Q(乔玉强), He X-F(何贤芳). Effects of genotype, environment and genotype × environment interaction on solvent retention capacity in common wheat. J Triticeae Crops (麦类作物学报), 2008, 28(3): 448–451 (in Chinese with English abstract)



[12]Zhang P-P(张平平), Yao J-B(姚金保), Ma H-X(马鸿翔). Genetic analysis of solvent retention capacity in wheat. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(6): 1170–1175 (in Chinese with English abstract)



[13]Xia Y-X(夏云祥), Ma C-X(马传喜), Si H-Q(司红起). Properties of solvent retention capacity in micro-core collections from Chinese wheat varieties. J Anhui Agric Univ (安徽农业大学学报), 2008, 35(3): 336–339 (in Chinese with English abstract)



[14]Xia Y-X(夏云祥), Ma C-X(马传喜), Si H-Q(司红起). Differences of solvent retention capacities (SRC)in wheat varieties and selection of wheat germplasm with low SRC. Jiangsu J Agric Sci (江苏农业学报), 2008, 24(6): 780–784 (in Chinese with English abstract)



[15]Qian S-H(钱森和), Zhang Y(张艳), Wang D-S(王德森), He Z-H(何中虎), Zhang Q-J(张岐军), Yao D-N(姚大年). Variation of pentosans and solvent retention capacities in wheat genotypes and their relationship with processing quality. Acta Agron Sin (作物学报), 2005, 31(7): 902–907 (in Chinese with English abstract)



[16]Bettge A D, Morris C F, Demacon V L, Kidwell K K. Adaptation of AACC method 56-l1, Solvent Retention Capacity, for use as an early generation selection for cultivar development. Cereal Chem, 2002, 79: 670–674



[17]He Z-H(何中虎), Lin Z-J(林作楫), Wang L-J(王龙俊), Xiao Z-M(肖志敏), Wan F-S(万富世), Zhuang Q-S(庄巧生). Classification on Chinese wheat regions based on quality. Sci Agric Sin (中国农业科学), 2002, 35(3): 359–364 (in Chinese with English abstract)



[18]Yao J-B(姚金保), Ma H-X(马鸿翔), Zhang P-P(张平平), Yao G-C(姚国才), Yang X-M(杨学明), Zhang P(张鹏). Progress on soft wheat quality research in China. Jiangsu J Agric Sci (江苏农业学报), 2009, 25(4): 919–924 (in Chinese with English abstract)



[19]Gao M(高梅), Zhang G-Q(张国权), Ni F-Y(倪芳妍), Luo Q-G(罗勤贵), Wei Y-M(魏益民), Zhang J-S(张继澍). The relationship between micro-SRC value and wheat quality. J Northwest A&F Univ (Nat Sci Edn) (西北农业大学学报•自然科学版), 2006, 34(12): 87–91 (in Chinese with English abstract)



[20]Z hou M-P(周淼平), Wu H-Y(吴宏亚), Yu G-H(余桂红), Zhang X(张旭), Ma H-X(马鸿翔). Microdetermination of solvent retention capacity in wheat. Jiangsu J Agric Sci (江苏农业学报), 2007, 23(4): 270–275 (in Chinese with English abstract)



[21]Xia Y-X(夏云祥), Qiao Y-Q(乔玉强), Si H-Q(司红起), Chang-C(常成), Ma C-X(马传喜). Relationship on solvent retention capacity with kernel hardness and protein content of wheat whole meal. J Triticeae Crops (麦类作物学报), 2009, 29(3): 429–432 (in Chinese with English abstract)



[22]Li B-B(李蓓蓓), Wang F-C(王凤成), Qi B-J(齐兵建), Zhang Z-X(张正骁), Wang Q-H(王庆荟). Study on the solvent retention capacity traits of wheat flour for crisp biscuit. Cereal Feed Ind (粮食与饲料工业), 2011, (9): 36–39 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!