欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2115-2121.doi: 10.3724/SP.J.1006.2012.02115

• 耕作栽培·生理生化 • 上一篇    下一篇

Bt基因玉米叶面微生物区系和细菌生理群多样性变化

田晓燕1,2,赵蕾2,赵辉1,2,孙红炜1,李凡1,杨淑珂1,路兴波1,*   

  1. 1 山东省农业科学院植物保护研究所,山东济南 250100;2 山东师范大学生命科学学院,山东济南 250014
  • 收稿日期:2012-03-13 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 路兴波, E-mail: luxb99@sina.com, Tel: 0531-83178363
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2009ZX08011-020B)资助。

Changes in Microbial Flora and Bacterial Physiological Group Diversity on Leaf Surface of Transgenic Bt Corn

TIAN Xiao-Yan1,2,ZHAO Lei2,ZHAO Hui1,2,SUN Hong-Wei1,LI Fan1,YAN Shi-Lei2,LU Xing-Bo1,*   

  1. 1 Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 2 College of Life Science, Shandong Normal University, Jinan 250014, China
  • Received:2012-03-13 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: 路兴波, E-mail: luxb99@sina.com, Tel: 0531-83178363

摘要:

大田栽培条件下,以转Bt基因玉米Mon810及其亲本玉米DK647作为材料,在玉米的不同生育期,于2010年和2011连续2年测定玉米叶面细菌、真菌和放线菌的数量变化,并对细菌生理群的数量和多样性进行分析。结果表明,虽然不同年份和生育期两个玉米品种叶面微生物数量存在差异,但年度间和相同的发育时期叶面微生物的数量变化趋势一致,由苗期开始增多,到生育后期达到数量高峰。转Bt基因玉米对叶面细菌和真菌影响较大,大部分生育期内Bt玉米叶面真菌和细菌数量与亲本玉米有显著差异,而放线菌数量与亲本相比差异不显著。2010年,苗期、拔节期和完熟期Bt玉米叶面细菌生理群Shannon-Wiener群落多样性指数、Simpson优势集中性指数和均匀度指数高于亲本玉米,2011年除喇叭口期Bt玉米细菌生理群的三种群落特征参数均大于对照。

关键词: Bt基因玉米, 叶面微生物, 多样性, 风险评估

Abstract:

In order to evaluate the effect of transgenic maize on epiphytes, the transgenic Bt maize Mon810 and its parental non-transgenic maize were grown in field to study the quantitative changes of culturable microorganisms and the diversity of bacterial functional groups at different growth stages in 2010 and 2011. Although there were differences in the colony-forming unites of culturable bacteria, actinomycetes and fungi of phyllosphere between Bt maize and non-Bt maize in different growing periods and different years, the trend of annual differences was basically consistent at the same growth period:the quantity of microbes in seeding stage is fewest and reaches the peak in the late of growing period. Compared with the controls, transgenic Bt maize seemed to stimulate the reproduction of phyllosphere fungi. However, no significant effect on the populations of actinomycete was observed. Significant differences were detected for bacteria at jointing stage, trumpet stage, silking stage and milking stage. In 2010, the Shannon-Wiener index, Simpson index and evenness index of bacteria physiological groups were higher at seeding, jointing and full-ripe stage, but lower at trumpet stage, tasseling stage, silking stage and milk stage. In 2011, the population characteristic parameters of the microorganisms of Bt-corn are more than the ones of non-Bt corn in the whole growing period except trumpet stage. It may be concluded there was some difference in terms of impacts between transgenic maize and non-transgenic maize, while the main impacts on microbial community composition were likely due to different years and different growth periods.

Key words: Bt corn, Epiphytes, Diversity, Risk assessment

[1]Shi W(施雯), Zhang H-B(张汉波). Characteristics of phyllosphere and epiphytes. Microbiology (微生物学通报), 2007, 34(4): 761–764 (in Chinese with English abstract)



[2]Katherine K, Donegan K K, Deborah L. Microbial population, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgenic Res, 1996, 5: 25–35



[3]Lottmann J, Heuer H, Smalla K. Influence of transgenic T4 lysozyme producing potato plants on potentially beneficial plant associated bacteria. FEMS Microbiol Ecol, 1999, 29: 365–377



[4]Zhao T-C(赵廷昌), Sun F-Z(孙福在), Zhang Y-J(张永军), Hong Y-M(洪玉梅), Liu P(刘鹏), Xie Y-J(谢扬军), Huang C(黄翅). Preliminary Study on Bacterial Population Fluctuation of Leaf Surface of Transgenic Cotton (转基因棉花叶面细菌数量消长的初步研究). In: Proceedings of Annual Conference of the Chinese Society of Plant Pathology in 2004 (中国植物病理学会2004年学术年会论文集), 2004. pp 155–158 (in Chinese)



[5]Wang Y-G(王元格), Tan M-Y(谭茂玉), Li J-E(李金娥), Xie X-E(谢庆恩), Fan Z-X(范作晓), Shen F-F(沈法富). Changes in diversity of culturable microorganisms on leaf surface of transgenic Bt cotton. Chin J Appl Ecol (应用生态学报), 2007, 18(3): 549–553 (in Chinese with English abstract) 



[6]Losey G E, Raynor L S, Cater M E. Transgenic pollen harms monarch larvae. Nature, 1999, 399: 214



[7]Sun C-X(孙彩霞), Wu Z-J(武志杰), Chen L-J(陈利军). Advances in the eco-safety researches of transgenic Bt maize. Acta Ecol Sin (生态学报), 2004, 24(4): 798–805 (in Chinese with English abstract)



[8]Saxena D, Stotzky G. Bacillus thuringiensis toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil. Soil Biol Biochem, 2001, 33: 1225–1230



[9]Watrud L S, Seidlet R J. Nontarget ecological effects of plants, microbial, and chemical introductions to terrestrial systems. In: Soil Chemistry and Ecosystem Health, Special Publication 52, 1998. pp 313–340



[10]Wang M(王敏), Sun H-W(孙红炜), Wu H-B(武海斌), Yang C-L(杨崇良), Li B-D(李宝笃), Lu X-B(路兴波). Quantity of culturable microorganisms and diversity of bacterial physiological groups in transgenic Bt corn rhizosphere. Chin J Ecol (生态学杂志), 2010, 29(3): 511–516 (in Chinese with English abstract)



[11]Tapp H, Callaghan M, Stotzky G. Adsorption and binding of the insecticidal proteins form Bacillus thuringiensis subsp. kurstaki and subsp. tenebrionis on clay. Soil Biol Biochem, 1994, 25: 663–679



[12]Diane E S H, Galen P D, Richard L H, Heather R M, Mark K S, Robyn R, Laura C H J, John E L, John J O, Les L. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc Natl Acad Sci USA, 2001, 98: 11931–11936



[13]Zangerl A R, McKenna D, Wraight C L, Carroll M, Ficarello P, Warner R, Berenbaum M R. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc Natl Acad Sci USA, 2001, 98: 11908–11912



[14]Li L-L(李丽莉), Wang Z-Y(王振营), He K-L(何康来), Bai S-X(白树雄), Hua L(花蕾). Effects of transgenic corn expressing Bacillus thuringiensis cry1Ab toxin on population increase of Rhopalosiphum maidis Fitch. Chin J Appl Ecol (应用生态学报), 2007, 18(5): 1077–1080 (in Chinese with English abstract)



[15]Lu X-B(路兴波), Sun H-W(孙红炜), Yang C-L(杨崇良), Liu K-Q(刘开启), Shang Y-F(尚佑芬), Zhao J-H(赵玖华). Gene flow of transgenic corn to cultivated relatives in China. Acta Ecol Sin (生态学报), 2005, 25(9): 2450–2453 (in Chinese with English abstract)



[16]Di H(邸宏), Liu Z-J(刘昭军). Gene flow of Bar transgenic maize (Zea mays L.). Chin Agric Sci Bull (中国农学通报), 2008, 24(12): 111–113 (in Chinese with English abstract)



[17]Zhou Y(周育), Qiao X-T(乔雄梧), Wang J(王静), Cui Z-L(崔中利), Li S-P(李顺鹏). Extraction methods of microorganisms from phyllosphere. Bull Bot Res (植物研究), 2006, 26(2): 233–237 (in Chinese with English abstract)



[18]Li Z-G(李振高), Luo Y-M(骆永明), Teng Y(滕应). Research Methods for Soil and Environmental Microbiology (土壤与环境微生物研究法). Beijing: Science Press, 2008. pp 52–61 (in Chinese)



[19]Magurran A E. Ecological Diversity and Its Measurement. New Jersey: Princeton University Press, 1988. pp 86–97



[20]Guo H(国辉), Mao Z-Q(毛志泉), Liu X-L(刘训理). Research progress of interaction between plant and microorganism. Chin Agric Sci Bull (中国农学通报), 2011, 27(9): 28–33 (in Chinese with English abstract)



[21]Cui Y-S(崔永三), Zhao B-G(赵博光), Liu Y-P(刘云鹏). Advance in the study on the plant phyllosphere bacteria. Forest Pest and Disease(中国森林病虫), 2007, 26(3): 26–29 (in Chinese with English abstract)



[22]Shen F-F(沈法富), Han X-L(韩秀兰), Fan S-L(范术丽). Changes in microbial flora and bacterial physiological group diversity in rhizosphere soil of transgenic Bt cotton. Acta Ecol Sin (生态学报), 2004, 24(3): 432–437 (in Chinese with English abstract)



[23]Baumgarte S, Tebbe C C. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on the bacterial communities in the maize rhizosphere. Mol Ecol, 2005, 14: 2539–2551

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 张玮, 洪艳云, 刘登望, 张博文, 易图永, 李林. 施钙对酸性红壤花生根系内生细菌群落结构的影响[J]. 作物学报, 2021, 47(1): 116-124.
[7] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[8] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[9] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[10] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[11] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[12] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[13] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[14] 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805.
[15] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!