欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 549-556.doi: 10.3724/SP.J.1006.2013.00549

• 研究简报 • 上一篇    下一篇

基于SNP标记的玉米株高及穗位高QTL定位

郑德波1,2,5,杨小红2,李建生2,严建兵3,张士龙4,贺正华4,黄益勤4,*   

  1. 1 广西大学农学院,广西南宁530005;2 中国农业大学国家玉米改良中心,北京100193;3 华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;4 湖北省农业科学院粮食作物研究所,湖北武汉430071;5 广西农业科学院玉米研究所,广西南宁530227
  • 收稿日期:2012-07-23 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 黄益勤,E-mail: hyqhzau@163.com,Tel: 027-87389897
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2010AA10A106)和湖北省农业科技创新中心项目资助。

QTL Identification for Plant Height and Ear Height Based on SNP Mapping in Maize (Zea mays L.)

ZHENG De-Bo1,2,5,YANG Xiao-Hong2,LI Jian-Sheng2,YAN Jian-Bing3,ZHANG Shi-Long4,HE Zheng-Hua4,HUANG Yi-Qin4,*   

  1. 1 College of Agronomy, Guangxi University, Nanning 530005, China; 2 National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China; 3 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; 4 Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; 5 Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530227, China?
  • Received:2012-07-23 Revised:2012-11-16 Published:2013-03-12 Published online:2013-01-04
  • Contact: 黄益勤,E-mail: hyqhzau@163.com,Tel: 027-87389897

摘要:

为进一步弄清玉米株高和穗位高的遗传机理,为育种生产提供服务,本研究以K22×CI7K22×Dan3402F2群体为作图群体,利用覆盖玉米10条染色体的SNP标记构建了2个连锁图谱。并将这2F2群体衍生的分别含237218个家系的F2:3群体用于田间性状的鉴定。用复合区间作图模型对2个群体的株高、穗位高表型进行QTL定位分析,结果显示,在武汉和南宁两种环境条件下共定位到21个株高QTL27个穗位高QTL;单个QTL表型变异贡献率的变幅为4.9%~17.9%;株高和穗位高QTL的作用方式以加性和部分显性为主;第7染色体上可能存在控制株高和穗位高的主效QTL

关键词: SNP, 数量性状位点(QTL), 连锁图谱, 株高, 穗位高, 玉米

Abstract:

In order to learn more about the genetic machanism of plant height and ear height, two linkage maps were constructed by SNP markers using two F2:3 families derived from K22 × CI7 and K22 × Dan340 respectively. These two maps included 429 and 344 polymorphic SNP markers respectively and their total lengths were 1 389.3 cM and 1 567.5 cM respectively. The phenotypic data of plant height (PH) and ear height (EH) of two populations were used to detect QTLs in two environments (2010 in Nanning and 2011 in Wuhan) by using the Composite Interval Mapping (CIM) model of WinQTLCart2.5. In total, 21 QTLs for plant height and 27 QTLs for ear height were identified. The phenotypic variance explained by each QTL ranged from 4.9% to 17.9%. The results showed that the additive and partial dominant effects were the main genetic basis for plant height and ear height in maize in this study, and the main QTLs for PH and EH were both found on chromosome 7.

Key words: SNP (single nucleotide polymorphism), QTL (quantitative trait locus), Linkage map, Plant height, Ear height, Zea mays

[1]Zhang Y, Li Y X, Wang Y, Liu Z Z, Liu C, Peng B, Tan W W, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. Stability of QTL across environments and QTL-by-Environment interactions for plant and ear height in maize. Agric Sci China, 2010, 9(10): 1400–1412

[2]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202

[3]Lan J-H(兰进好), Chu D(褚栋). Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas (遗传), 2005, 27(6): 925–934 (in Chinese with English abstract)

[4]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726

[5]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485–488

[6]Salvi S, Sponza G, Morgante M, Tomes D, Niu X M, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B L, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381

[7]Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J F. The origin of the naked grains of maize. Nature, 2005, 436 : 714–719

[8]Zheng P Z, Allen W B, Roesler K, Williams M E,  Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynsk  M C,Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372

[9]Li L, Li H, Li Q, Yang X H, Zheng D B, Warburton M, Chai Y C, Zhang P, Guo Y Q, Yan J B, Li J S. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE, 2011, 6(9): 1–12

[10]Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–635

[11]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D , Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289

[12]Guan Q(关强), Zhang Y-X(张月学), Xu X-L(徐香玲), Sun D-Q(孙德全), Li S-Y(李绥艳), Lin H(林红), Pan L-Y(潘丽艳), Ma Y-H(马延华). Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agric Sci (黑龙江农业科学), 2008, (1): 102–104 (in Chinese with English abstract)

[13]Zou Y-P(邹喻苹), Ge S(葛颂). A novel molecular marker—SNPs and its application. Biodiversity Sci (生物多样性), 2003, 11(5): 370–382 (in Chinese with English abstract)

[14]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–719

[15]Li H H, Bradbury P, Ersoz E, Buckler E S, Wang J K. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE, 2011, 6(3): 1–12 (e17573)

[16]Wang L-M(汪黎明), Wang Q-C(王庆成), Meng Z-D(孟昭东). Corn Varieties and Their Pedigrees in China (中国玉米品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2010. pp 467–602 (in Chinese)

[17]Li F-M(李发民), Mao J-C(毛建昌), Li X-T(李向拓). The breeding of maize inbred line K22 and the analysis on the combine ability. J Gansu Agric Univ (甘肃农业大学学报), 2004, 39(3): 312–315 (in Chinese with English abstract)

[18]Fan J B, Gunderson K L, Bibikova M, Yeakyley J M, Chen J, Garcia E W, Lebruska L L, Laurent M, Shen R, Barker D. Illumina Universal Bead Arrays. Methods Enzymol, 2006, 410: 57–73

[19]Yan J B, Yang X H, Trushar S, Hector S V, Li J S, Marilyn W, Zhou Y, Crouch J H, Xu Y B. High-throughput SNP genotyping with the Golden Gate assay in maize. Mol Breed, 2010, 25: 441–451

[20]Lander E C, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181

[21]Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78

[22]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 Department of Statistics. Raleigh: North Carolina State University, 2006. (http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm)

[23]Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits. Crop Sci, 1987, 27(3): 639-648

[24]Chen Y-S(陈玉水), Lu C-B(卢川北). Correlation analysis on plant height and ear height in maize (Zea mays L.). Guangxi Agric Sci (广西农业科学), 2004, 35(2): 111 (in Chinese)

[25]Sun Z-C(孙志超), Jing S-L(荆绍凌), Zhang Z-J(张志军), Zhou X-H(周小辉), Yue Y-H(岳尧海), Zhang J-X(张建新), Ren J(任军). Analysis on genetic variations and correlation of the main agronomic traits in corn hybrids. Anhui Agric Sci Bull (安徽农学通报), 2008, 14(20): 54–55 (in Chinese)

[26]Zhang Z-M(张志明), Zhao M-J(赵茂俊), Rong T-Z(荣廷昭), Pan G-T(潘光堂). SSR linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agron Sin (作物学报), 2007, 33(2): 341–344 (in Chinese with English abstract).

[27]Yang X-J(杨晓军), Lu M(路明), Zhang S-H(张世煌), Zhou F(周芳), Qu Y-Y(曲延英), Xie C-X(谢传晓). QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (Beijing)(遗传), 2008, 30(11): 1477–1486 (in Chinese with English abstract)

[28]Xing Y-Z(邢永忠), Xu C-G(徐才国). Advance in crop quantitative trait loci. Hereditas (Beijing) (遗传), 2001, 23(5): 498–502 (in Chinese with English abstract)

[29]Schön C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70: 648–659

[30]Schön C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G, Seitzer J F. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 37: 378–389

[31]Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7–16

[32]Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize: II. Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89: 451-458

[33]Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!