作物学报 ›› 2013, Vol. 39 ›› Issue (03): 549-556.doi: 10.3724/SP.J.1006.2013.00549
郑德波1,2,5,杨小红2,李建生2,严建兵3,张士龙4,贺正华4,黄益勤4,*
ZHENG De-Bo1,2,5,YANG Xiao-Hong2,LI Jian-Sheng2,YAN Jian-Bing3,ZHANG Shi-Long4,HE Zheng-Hua4,HUANG Yi-Qin4,*
摘要:
[1]Zhang Y, Li Y X, Wang Y, Liu Z Z, Liu C, Peng B, Tan W W, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. Stability of QTL across environments and QTL-by-Environment interactions for plant and ear height in maize. Agric Sci China, 2010, 9(10): 1400–1412[2]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202[3]Lan J-H(兰进好), Chu D(褚栋). Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas (遗传), 2005, 27(6): 925–934 (in Chinese with English abstract) [4]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726[5]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485–488[6]Salvi S, Sponza G, Morgante M, Tomes D, Niu X M, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B L, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381 [7]Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J F. The origin of the naked grains of maize. Nature, 2005, 436 : 714–719[8]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynsk M C,Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372[9]Li L, Li H, Li Q, Yang X H, Zheng D B, Warburton M, Chai Y C, Zhang P, Guo Y Q, Yan J B, Li J S. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE, 2011, 6(9): 1–12 [10]Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–635[11]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D , Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289 [12]Guan Q(关强), Zhang Y-X(张月学), Xu X-L(徐香玲), Sun D-Q(孙德全), Li S-Y(李绥艳), Lin H(林红), Pan L-Y(潘丽艳), Ma Y-H(马延华). Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agric Sci (黑龙江农业科学), 2008, (1): 102–104 (in Chinese with English abstract) [13]Zou Y-P(邹喻苹), Ge S(葛颂). A novel molecular marker—SNPs and its application. Biodiversity Sci (生物多样性), 2003, 11(5): 370–382 (in Chinese with English abstract)[14]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–719[15]Li H H, Bradbury P, Ersoz E, Buckler E S, Wang J K. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE, 2011, 6(3): 1–12 (e17573)[16]Wang L-M(汪黎明), Wang Q-C(王庆成), Meng Z-D(孟昭东). Corn Varieties and Their Pedigrees in China (中国玉米品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2010. pp 467–602 (in Chinese)[17]Li F-M(李发民), Mao J-C(毛建昌), Li X-T(李向拓). The breeding of maize inbred line K22 and the analysis on the combine ability. J Gansu Agric Univ (甘肃农业大学学报), 2004, 39(3): 312–315 (in Chinese with English abstract)[18]Fan J B, Gunderson K L, Bibikova M, Yeakyley J M, Chen J, Garcia E W, Lebruska L L, Laurent M, Shen R, Barker D. Illumina Universal Bead Arrays. Methods Enzymol, 2006, 410: 57–73[19]Yan J B, Yang X H, Trushar S, Hector S V, Li J S, Marilyn W, Zhou Y, Crouch J H, Xu Y B. High-throughput SNP genotyping with the Golden Gate assay in maize. Mol Breed, 2010, 25: 441–451 [20]Lander E C, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[21]Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78 [22]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 Department of Statistics. Raleigh: North Carolina State University, 2006. (http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm)[23]Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits. Crop Sci, 1987, 27(3): 639-648[24]Chen Y-S(陈玉水), Lu C-B(卢川北). Correlation analysis on plant height and ear height in maize (Zea mays L.). Guangxi Agric Sci (广西农业科学), 2004, 35(2): 111 (in Chinese)[25]Sun Z-C(孙志超), Jing S-L(荆绍凌), Zhang Z-J(张志军), Zhou X-H(周小辉), Yue Y-H(岳尧海), Zhang J-X(张建新), Ren J(任军). Analysis on genetic variations and correlation of the main agronomic traits in corn hybrids. Anhui Agric Sci Bull (安徽农学通报), 2008, 14(20): 54–55 (in Chinese)[26]Zhang Z-M(张志明), Zhao M-J(赵茂俊), Rong T-Z(荣廷昭), Pan G-T(潘光堂). SSR linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agron Sin (作物学报), 2007, 33(2): 341–344 (in Chinese with English abstract).[27]Yang X-J(杨晓军), Lu M(路明), Zhang S-H(张世煌), Zhou F(周芳), Qu Y-Y(曲延英), Xie C-X(谢传晓). QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (Beijing)(遗传), 2008, 30(11): 1477–1486 (in Chinese with English abstract)[28]Xing Y-Z(邢永忠), Xu C-G(徐才国). Advance in crop quantitative trait loci. Hereditas (Beijing) (遗传), 2001, 23(5): 498–502 (in Chinese with English abstract)[29]Schön C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70: 648–659[30]Schön C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G, Seitzer J F. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 37: 378–389[31]Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7–16[32]Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize: II. Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89: 451-458[33]Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[12] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[13] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[14] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[15] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
|