作物学报 ›› 2013, Vol. 39 ›› Issue (06): 999-1012.doi: 10.3724/SP.J.1006.2013.00999
李洪杰1,*,王晓鸣1,陈怀谷2,李伟2,刘东涛3,张会云3
LI Hong-Jie1,*,WANG Xiao-Ming1,CHEN Huai-Gu2,LI Wei2,LIU Dong-Tao3,ZHANG Hui-Yun3
摘要:
为鉴定小麦-偃麦草杂种后代以及我国小麦品种和育种中间品系对纹枯病的抗性,并且解析偃麦草染色体与纹枯病抗性的关系,在徐州和南京两个试点,采用田间病圃法对321份普通小麦品种或品系和56份小麦-偃麦草杂种后代材料进行了纹枯病抗性鉴定。在徐州试点没有发现高抗纹枯病的种质,但是有52份材料表现中抗反应型,包括34份普通小麦材料,其中萧农8506-1、小偃81、冀植4001、农大195、徐州8913和京东3066A-3的相对抗病指数高于0.7。在南京试点,全部普通小麦材料都不抗纹枯病,只有5份小麦-偃麦草种质表现中抗反应型。部分小麦-偃麦草种质的病情指数不但显著低于感病对照品种苏麦3号和扬麦158,而且还低于抗病对照品种安农8455和宁麦9号,如小麦-中间偃麦草4Ai#2或4Ai#2S附加系、代换系和易位系材料TA3513、TA3516、TA3517和TA3519及小麦-长穗偃麦草第4部分同源群染色体代换系SS767,说明中间偃麦草4Ai#2染色体和长穗偃麦草4J染色体可能与纹枯病病情指数降低有关。基因组原位杂交分析结果表明,4Ai#2染色体属中间偃麦草的Js基因组,而长穗偃麦草与纹枯病抗性相关的第4部分同源群染色体属J基因组。虽然纹枯病与眼斑病的发病部位和症状非常相似,但抗眼斑病基因Pch1 (Madsen)和Pch2 (Cappelle-Desprez)对纹枯病无效。
[1]Hamada M S, Yin Y N, Chen H G, Ma Z H. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Manag Sci, 2011, 67: 1411–1419[2]Pitt D. Studies on sharp eyespot disease of cereals: Effects of the disease on the wheat host and the incidence of disease in the field. Ann Appl Biol, 1966, 58: 299–308[3]Richardson M J, Whittle A M, Jacks M. Yield loss relationships in cereals. Plant Pathol, 1976, 25: 21–30[4]Clarkson J D S, Cook R J. Effect of sharp eyespot (Rhizoctonia cerealis) on yield loss in winter wheat. Plant Pathol, 1983, 32: 421–428[5]Cromey M G, Butler R C, Boddington H J, Moorhead A R. Effects of sharp eyespot on yield of wheat (Triticum aestivum) in New Zealand. New Zealand J Crop Hort Sci, 2002, 30: 9–17[6]Lemańczyk G, Kwa?na H. Effect of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol, 2012, 135: 187–200[7]Davies W P, Price K R. Sensitivity of sharp eyespot of wheat and Rhizoctonia cerealis to fungicides. Ann Appl Biol, 1983, 102: 54–55[8]Matthews A B, Gold K, Davies W P. Response of true eyespot and sharp eyespot of wheat to fungicides. Ann Appl Biol, 1985, 106: 76–77[9]Chen H G, Gao Q G, Xiong G L, Li W, Zhang A X, Yu H S, Wang J S. Composition of wheat rhizosphere antagonistic bacteria and wheat sharp eyespot as affected by rice straw mulching. Pedosphere, 2010, 20: 505–514[10]Jiang L-L(姜莉莉), Qiao K(乔康). Research status of wheat sharp eyespot resistance to fungicides. Agrochem Res Appl (农药研究与应用), 2010, 14(3): 11–14 (in Chinese with English abstract)[11]Hamada M S, Yin Y N, Ma Z H. Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China. Crop Prot, 2011, 30: 1028–1033[12]Xia X-M(夏晓明), Wang K-Y(王开运), Wang H-X(王怀训), Liu Y-H(刘英华), Hu Y(胡燕), Fan X(范昆). Studies on resistance risk forecast to validamycin against Rhizoctonia cerealis. Chin J Pestc Sci (农药学学报), 2006, 8(2): 115–120 (in Chinese with English abstract)[13]Guo C-Q(郭春强), Liao P-A(廖平安), Ge C-B(葛昌斌), He D-X(贺德先), Zang H-Z(臧贺藏), Guo S-J(郭松景), Huang Q-M(黄全民), Chen Q(陈琦). Effects of main agronomic measures on reducing disease index of sharp eyespot in wheat (Triticum aestivum L.). J Triticeae Crops (麦类作物学报), 2008, 28(3): 537–540 (in Chinese with English abstract)[14]Matusinsky P, Mikolasova R, Klem K, Spitzer T, Urban T. The role of organic vs. conventional farming practice, soil management and preceding crop on the incidence of stem-base pathogens on wheat. J Plant Dis Prot, 2008, 115: 17–22[15]Wan Y-X(万映秀), Wang W-X(王文相), Zhang P-Z(张平治), Cao W-X(曹文昕), Zhao L(赵莉). Identification techniques and screening of sharp eyespot resistance of wheat. Chin Agric Sci Bull (中国农学通报), 2009, 25(7): 223–226 (in Chinese with English abstract)[16]Li S-S(李斯深), Wang H-G(王洪刚), Liu A-X(刘爱新), Li X-B(李宪彬), Li A-F(李安飞), Liu S-B(刘树兵). Identification and genetic analysis of resistance to sharp eyespot (Rhizoctonia cerealis) in winter wheat germplasm. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(5): 1004–1008 (in Chinese with English abstract)[17]Yang L-J(杨立军), Yang X-J(杨小军), Yu D-Z(喻大昭), Wang S-N(王绍南). Resistance evaluation of wheat cultivars (lines) to Rhizoctonia cerealis Van der Hoeven and screening of its resistance resources. Plant Prot (植物保护), 2001, 27(2): 4–7 (in Chinese with English abstract)[18]Yan W(颜伟), Wu J-Z(吴纪中), Cai S-B(蔡士宾). Identification and innovation of resistance to sharp eyespot (Rizoctonia cerealis) in wheat germplasm. Fujian Sci Technol Rice Wheat (福建稻麦科技), 2004, 22(3): 12–16 (In Chinese with English abstract)[19]Xing X-P(邢小萍), Yuan H-X(袁虹霞), Sun B-J(孙炳剑), Li H-L(李洪连). The resistant dynamic of wheat cultivars (lines) to wheat sharp eyespot. Henan Agric Sci (河南农业科学), 2008, (12): 85–88 (in Chinese with English abstract)[20]Shi J-R(史建荣), Wang Y-Z(王裕中), Chen H-G(陈怀谷), Shen S-W(沈素文). Screening techniques and evaluation of wheat resistance to sharp eyespot caused by Rhizoctonia cerealis. Acta Phytophalacica Sin (植物保护学报), 2000, 27(2): 107–112 (in Chinese with English abstract)[21]Li H-L(李洪连), Yuan H-X(袁虹霞), Diao X-G(刁晓葛), Li S-P(李锁平), Hu Y-X(胡玉欣), Wang S-Z(王守正). Evaluation on the resistance of major wheat varieties in Henan province to sharp eyespot. Acta Agric Univ Henanensis (河南农业大学学报), 1998, 32(2): 107–111 (in Chinese with English abstract)[22]Ren L-J(任丽娟), Chen P-D(陈佩度), Chen H-G(陈怀谷), Ma H-X(马鸿翔). Screening of resistance to sharp eyespot in wheat. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 108–111 (in Chinese with English abstract)[23]Zhang H-Y(张会云), Feng G-H(冯国华), Liu D-T(刘东涛), Liu S-L(刘世来), Wang L-H(王来花), Wang J(王静), Wang X-J(王晓军), Chen R-Z(陈荣振). Identification and utilization of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat germplasm resources. Acta Agric Boreali-Occident Sin (西北农业学报), 2009, 18(1): 213–216 (in Chinese with English abstract)[24]Leng S-F(冷苏凤), Zhang A-X(张爱香), Li W(李伟), Chen H-G(陈怀谷). Resistance of wheat cultivars to sharp eyespot in Jiangsu province. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(6): 1176–1180 (in Chinese with English abstract)[25]Yuan H-X(袁虹霞), Li H-L(李洪连), Wang S-Z(王守正), Li S-P(李锁平), Hu Y-X(胡玉欣). Identification of resistance to wheat sharp eyespot in wheat relatives. Acta Agric Boreali-Sin (华北农学报), 1998, 13(4): 26–29 (in Chinese with English abstract)[26]Li H J, Conner R L, Murray T D. Resistance to soil-borne diseases of wheat: contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Can J Plant Sci, 2008, 88: 195–205[27]Li H J, Wang X M. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics, 2009, 36: 557–565[28]Wang Y-Z(王裕中), Wu Z-F(吴志凤), Shi J-R(史建荣), Chen H-G(陈怀谷). Study on occurrence of wheat sharp eyespot in Jangsu and the factors influencing its development in fields. Acta Phytophyl Sin (植物保护学报), 1994, 21(2): 109–114 (in Chinese with English abstract)[29]Fang Z(方正), Chen H-G(陈怀谷), Chen H-D(陈厚德), Wang Y-Z(王裕中). The profile and virulence of wheat sharp eyespot pathogens in Jiangsu. J Triticeae Crops (麦类作物学报), 2006, 26(1): 117–120 (in Chinese with English abstract)[30]Chen Y(陈莹), Li W(李伟), Zhang X-X(张晓祥), Zhang B-Q(张伯桥), Yu H-S(于汉寿), Chen H-G(陈怀谷). Composition and virulence of pathogen of wheat sharp eyespot in north latitude 33° of China. J Triticeae Crop (麦类作物学报), 2009, 29(6): 1110–1114 (in Chinese with English abstract)[31]Yan W(颜伟), Wu J-Z(吴纪中), Cai S-B(蔡士宾), Zhang X-Y(张仙义), Wu X-Y(吴小有). Analysis of combining ability of resistance to sharp eyespot in wheat. Jiangsu J Agric Sci (江苏农业科学), 2006, (6): 46–49 (in Chinese)[32]Wang R R C, Wei J Z. Variations of two repetitive DNA sequences in several Triticeae genomes revealed by polymerase chain reaction and sequencing. Genome, 1995, 38: 1221–1229[33]Li H J, Arterburn M, Jones S S, Murray T D. A new source of resistance to Tapesia yallundae associated with a homoeologous group 4 chromosome in Thinopyrum ponticum. Phytopathology, 2004, 94: 932–937[34]Li H J, Arterburn M, Jones S S, Murray T D. Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theor Appl Genet, 2005, 111: 932–940[35]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H. Effective resources in wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Sci, 2012, 52: 1209–1217[36]Cox C M, Murray T D, Jones S S. Perennial wheat germplasm lines resistant to eyespot, Cephalosporium stripe, and wheat streak mosaic. Plant Dis, 2002, 86: 1043–1048[37]Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004, 47: 215–223[38]Baley G J, Talbert L E, Martin J M, Young M J, Habernicht D K, Kushnak G D, Berg J E, Lanning S P, Bruchner P L. Agronomic and end-use qualities of Wheat streak mosaic virus resistant spring wheat. Crop Sci, 2001, 41: 1779–1784[39]Tyler J M, Webster J A, Merkle O G. Designation of genes in wheat germplasm conferring greenbug resistance. Crop Sci, 1987, 27: 526–527[40]Friebe B, Mukai Y, Dhaliwal H S, Martin T J, Gill B S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet, 1991, 81: 381–389[41]Zhu F(朱凤), Yang R-M(杨荣明), Xu D-X(徐东祥), Tai D-L(邰德良). Reasons of heavy occurrence and control measures of rice sheath blight in Jiangsu Province in 2010. China Plant Protect (中国植保导刊), 2011, 31(9): 29–32 (in Chinese) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|