欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1257-1265.doi: 10.3724/SP.J.1006.2013.01257

• 耕作栽培·生理生化 • 上一篇    下一篇

初花后土壤碱解氮浓度对棉花生物量和氮素累积特征的影响

宋为超,刘春雨,徐娇,睢宁,陈兵林*,周治国?   

  1. 南京农业大学 / 农业部作物生理生态与生产管理重点实验室, 江苏南京 210095
  • 收稿日期:2012-11-12 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 陈兵林, E-mail: blchen@njau.edu.cn; 周治国, E-mail: giscott@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30771279, 30971735), 国家公益性行业(农业)科研专项(3-5)和江苏省农业三新工程项目[SXGC(2012)390]资助。

Effects of Soil Alkaline Hydrolyzed Nitrogen Concentration on Biomass and Nitrogen Accumulation Eigenvalues of Cotton after Initial Flowering

SONG Wei-Chao,LIU Chun-Yu,XU Jiao,SUI Ning,CHEN Bing-Lin*,ZHOU Zhi-Guo*   

  1. Nanjing Agricultural University / Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, China
  • Received:2012-11-12 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 陈兵林, E-mail: blchen@njau.edu.cn; 周治国, E-mail: giscott@njau.edu.cn

摘要:

试验于2009—2010年分别在江苏省棉花科技示范基地东台市(120°19' E, 32°52' N)和大丰市(120°28' E33°12' N)进行。设置6个水平(0150300375450600 kg hm–2)施氮量,研究土壤碱解氮浓度变化特征及对棉花生物量和氮素累积特征的影响。结果表明,棉花初花后土壤碱解氮浓度的动态变化可用三次函数方程模拟,棉花生物量、氮素累积动态可用Logistic方程拟合;土壤碱解氮浓度快速下降期的平均速率、持续时间分别与棉株生物量、氮素快速累积期的最大相对累积速率、持续时间有较高的相关性;375 kg hm–2施氮量下,土壤碱解氮浓度快速下降期具最佳平均速率和持续时间,棉株生物量和氮素快速累积期有最优的累积特征值,棉花具有最优的生物量、氮素累积特征值,棉花产量最高、综合品质最优。高施氮量和低施氮量皆不利于棉花生物量和氮素的累积。因此,适宜的施氮量及施氮运筹可调节棉花初花后土壤碱解氮浓度的动态变化,优化棉花生物量和氮素的累积以及产量和品质。

关键词: 棉花, 土壤碱解氮浓度, 生物量和氮素累积, 产量品质

Abstract:

Two field experiments were conducted at Dongtai City (120°19' E, 32°52' N) and Dafeng City (120°28' E, 33°12' N) , Jiangsu province, in 2009 and 2010, severally. Six nitrogen rates (0, 150, 300, 375, 450, and 600 kg ha–1) were set to study the effects of soil alkaline hydrolyzed nitrogen concentration (SAHNC) on biomass and nitrogen accumulation of cotton. The result showed that, the change of SAHNC could be simulated with a cubic function, biomass and nitrogen accumulation of cotton could be simulated with logistic formula; average rate and duration of the SAHNC’s speedy reducing had significant correlation with the biggest rate and duration of speedy accumulation period of cotton’s biomass and nitrogen. Under the nitrogen applied level of 375 kg ha–1, the SAHNC speedy reducing had optimal average rate and duration, cotton plant had optimal biomass and nitrogen accumulation eigenvalues, and had the highest fiber yield and optimal fiber qualities. Too high or too low nitrogen application was not benefit for biomass and nitrogen accumulation of cotton. Therefore, optimal nitrogen applied level and nitrogen applied strategy can adjust the dynamic change of SAHNC, and be beneficial for optimizing biomass and nitrogen accumulation eigenvalue and the lint yield and qualities after initial flowering.

Key words: Cotton, Alkaline hydrolyzed nitrogen concentration, Biomass and nitrogen accumulation of cotton, Lint yield and qualities

[1]Tewolde H, Fernandez C J, Foss D C. Maturity and lint yield of nitrogen and phosphorus deficient pima cotton. Agron J, 1994, 86: 303–309



[2]Boquet D J, Breitenbeck G A. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Sci, 2000, 40: 1685–1693



[3]Blaise D, Singh J V, Bonde A N, Tekale K U, Mayee C D. Effects of farmyard manure and fertilizers on yield, fiber quality and nutrient balance of rainfed cotton (Gossypium hirsutum L.). Biores Technol, 2005, 96: 345–349



[4]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops. Field Crops Res, 2001, 70: 43–53



[5]Xue X-P(薛晓萍), Guo W-Q(郭文琦), Wang Y-L(王以琳), Zhang L-J(张丽娟), Zhou Z-G(周治国). Research on dynamic increase characteristics of dry matter of cotton at different nitrogen levels. Cotton Sci (棉花学报), 2006, 18(6): 323–326 (in Chinese with English abstract)



[6]Institute of Soil Science, Chinese Academy of Science (中国科学院南京土壤研究所). Soil Physics and Chemises Analysis (土壤理化分析). Shanghai: Shanghai Scientific &Technical Press, 1978 (in Chinese)



[7]Kersebaum K C, Lorenz K, Reuter H I, Schwarzc J, Wegehenkela M, Wendrothd O. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Physics Chem Earth, 2005, 30: 59–67



[8]Malhi S S, Harapiak J T, Nyborg M, Gregorich E G, Monreal C M. Light fraction organic N, ammonium, nitrate and total N in a thin black chernozemic soil under brome grass after 27 annual applications of different N rates. Nutr Cycl Agroecosyst, 2003, 65: 201–210



[9]Malhi S S, Brandt S A, Ulrich D. Lemke R, Gill K S. Accumulation in the soil profile under various alternative cropping system. J Plant Nutr, 2002, 25: 2499–2520



[10]Zhang Q-L(张庆利), Zhang M(张民), Tian W-B(田维彬). Leaching characteristics of controlled release and common no nitrogen fertilizers and their effects on soil and ground water quality. Soil Environ Sci (土壤与环境), 2001, 10(2): 98–103 (in Chinese with English abstract)



[11]Wang Y-J(王艳杰), Fu-H(付桦). The relationships among organic matter, total nitrogen and alkaline nitrogen of soil in wuling mountain. J Agro-Environ Sci (农业环境科学学报), 2005, 24(S1): 85–90 (in Chinese with English abstract)



[12]Shi C-J(施春健), Zhuang Q-L(庄秋丽), Li Q(李琪), Liang W-J(梁文举), Jiang Y(姜勇). Profile distribution of alkali hydrolyzed nitrogen in farm land soils of Northeast China along a latitudinal gradient. Chin J Ecol (生态学杂志), 2007, 26(4): 501–504 (in Chinese with English abstract)



[13]Zheng D-M(郑德明), Jiang Y-J(姜益娟), Liu W-Y(柳维扬). The spatio-temporal variability of soil available nutrients of cotton fields in Xinjiang. Cotton Sci (棉花学报), 2006, 18(1): 23–26 (in Chinese with English abstract)



[14]Watt M S, Clinton P W, Whitehead D, Richardson B. Mason E G, Leckie A C. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiation a dry land site. For Ecol Manag, 2003, 184: 93–104



[15]Xue X-P(薛晓萍), Wang J-G(王建国), Guo W-Q(郭文琦), Chen B-L(陈兵林), You-J(尤军), Zhou Z-G(周治国). Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering. Acta Ecol Sin (生态学报), 2006, 26(11): 3631–3640 (in Chinese with English abstract)



[16]Rochester J, Peoples M B, Hulugalle N R, Gault R R, Constable G A. Using legumes to enhance nitrogen fertility and soil condition in cotton cropping systems. Field Crops Res, 2001, 70: 27–41



[17]Yang Z-B(杨志彬), Chen B-L(陈兵林), Zhou Z-G(周治国). Spatial and temporal variability of available nutrient in cotton field at flower and boll stage and its effect on lint yield and fiber quality. Acta Agron Sin (作物学报), 2008, 34(8): 1393–1402 (in Chinese with English abstract)



[18]Liu S-R(刘生荣), Liu D-P(刘党培), Jia T(贾涛). Effect of N P K basal dressing on vegetative organ development, dry matter accumulation and yield of transgenic pest-resistant cotton. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(2): 282–284 (in Chinese with English abstract)



[19]Hu G-Z(胡国智), Zhang Y(张炎), Li Q-J(李青军), Hu W(胡伟), Meng F-X(孟凤轩), Feng G-P(冯广平). Effect of nitrogen fertilizer management on the dry matter accumulation uptake and utilization and yield in cotton. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(2): 397–403 (in Chinese with English abstract)



[20]Bange M P, Milroy S P. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Res, 2004, 87: 73–87



[21]Song Z-W(宋志伟), Liu S-T(刘松涛), Cao W-M(曹雯梅), Wang H-M(王汉民), Fang W-P(房卫平), Li C-H(李潮海). Study on the characteristics of N P K absorption and distribution of hybrid cottons. Cotton Sci (棉花学报), 2006, 18(2): 89–93 (in Chinese with English abstract)



[22]Wang Z-S(王子胜), Xu M (徐敏), Liu R-X(刘瑞显), Wu X-D(吴晓东), Zhu H(朱鹤), Chen B-L(陈兵林), Zhou Z-G(周治国). Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Sci (棉花学报), 2011, 23(6): 537–544 (in Chinese with English abstract)



[23]Bremner J M. Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci, 1960, 55: 11–33



[24]Yang G, Tang H, Nie Y, Zhang X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron, 2011, 35: 164–170

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!