欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1248-1256.doi: 10.3724/SP.J.1006.2013.01248

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆苗期耐盐性的简便鉴定方法

姜静涵,郭勇,常汝镇,关荣霞*,邱丽娟*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程 / 农业部北京大豆生物学重点实验室,北京100081
  • 收稿日期:2012-12-27 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-62135623; 关荣霞, E-mail: rx_guan@sina.com
  • 基金资助:

    本研究由国家自然科学基金项目(30971801),国家转基因生物新品种培育重大专项(2009ZX08009-088B, 2011ZX08004-002)和国家重点基础研究发展计划(973计划)项目(2009CB118400)资助。

Simple Evaluation Method of Tolerance to Salt at Seedling Stage in Soybean

JIANG Jing-Han,GUO Yong,CHANG Ru-Zhen,GUAN Rong-Xia*,QIU Li-Juan*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-12-27 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-62135623; 关荣霞, E-mail: rx_guan@sina.com

摘要:

盐胁迫是影响大豆产量的重要非生物胁迫因素,筛选耐盐种质资源对培育耐盐大豆品种具有重要的意义。本研究利用4个耐盐品种和4个盐敏感品种进行苗期耐盐性鉴定,以蛭石为培养基质,在大豆真叶展开时,分别用100200250 mmol L–1NaCl溶液处理,每2 d浇一次盐溶液,每天测定大豆真叶SPAD值。盐处理8 d后,分别取各品种的根、茎、叶,用原子吸收光谱仪测定其Na+含量。结果表明,用200 mmol L–1 NaCl处理的耐盐品种和盐敏感品种表型差异明显,但叶片Na+含量差异不显著;用250 mmol L–1 NaCl处理后,表型差异明显且叶片Na+含量差异显著。200 mmol L–1250 mmol L–1 NaCl处理下叶片失绿明显,盐敏感品种叶片积累的Na+含量与SPAD值极显著负相关。本研究建立了一种以蛭石为基质,用200 mmol L–1250 mmol L–1 NaCl处理,8 d即可进行大豆苗期耐盐性鉴定的简便方法,为大豆种质资源苗期耐盐性的大规模鉴定及耐盐品种选择和耐盐机理的研究提供了方法。

关键词: 大豆, 苗期, 耐盐性, Na+

Abstract:

Salt stress seriously affected the production of soybean. Thus screening salt-tolerant soybeans is very important for developing salt resistant cultivars. The objective of this study was to establish a simple method for screening soybean varieties in response to salt stress. The seedlings of four salt-tolerant varieties and four salt-sensitive varieties were grown in vermiculite pouring with 0, 100, 200, and 250 mmol L–1 NaCl solutions, adding each two days for three times. The SPAD was measured every day. The root, stem and leaf were sampled after eight days of treatment and Na+ content were measured by the atomic absorption spectrophotometer. The results indicated that it is easy to distinguish the level of salt tolerance based on foliar symptoms in both treatment of 200 mmol L–1 and 250 mmol L–1 NaCl. Under 250 mmol L–1 NaCl stress, the Na+ content in leaf for salt-tolerant varieties was lower than that for salt-sensitive varieties. There was a significant correlation between Na+ content and SPAD in salt-sensitive varieties. This experiment established a convenient method of soybean salinity tolerance identification at seedling stage, using the seedlings grown in vermiculite with 200 mmol L–1 and 250 mmol L–1 NaCl treatment for eight days. It will facilitate the screening of germplasm, mechanism study and breeding selection on a large scale.

Key words: Soybean, Seedling stage, Salt tolerance, Na+

[1]Lin H-M(林汉明), Chang R-Z(常汝镇), Shao G-H(邵桂花), Liu Z-T(刘忠堂). Research on Tolerance to Stresses in Chinese Soybean (中国大豆耐逆研究). Beijing: China Agriculture Press, 2009. pp 66–70 (in Chinese)



[2]Luo Q-Y(罗庆云), Yu B-J(於丙军), Liu Y-L(刘有良). Effect of NaCl on the growth, K+, Na+ and Cl– distribution in seedlings of 6 soybean cultivars (Glycine max L. Merrill). Soybean Sci (大豆科学), 2001, 20(3): 177–182 (in Chinese with English abstract)



[3]Li Z-N(李兆南), Sun S(孙石). Research advances on salt tolerance identification of soybean. Anhui Agric (现代农业科技), 2011, (8): 11–13 (in Chinese with English abstract)



[4]Durand M, Lacan D. Sodium partitioning within the shoot of soybean. Physiol Plant, 1994, 91: 65–71



[5]Shao G-H(邵桂花), Chang R-Z(常汝镇), Chen Y-W(陈一舞), Yan S-R(闫淑荣). Study on inheritance of salt tolerance in soybean. Acta Agron Sin (作物学报), 1994, 20(6): 721–726 (in Chinese with English abstract)



[6]Valencia R, Chen P Y, Ishibashi T, Conatser M. A rapid and effective method for screening salt tolerance in soybean. Crop Sci, 2008, 48: 1773–1779



[7]Liu G-Y(刘光宇), Guan R-X(关荣霞), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Correlation between Na+ contents in different organs of soybean and salt tolerance at the seedling stage. Acta Agron Sin (作物学报), 2011, 37(7): 1266–1273 (in Chinese with English abstract)



[8]Lee J, Smothers S, Dunn D, Villagarcia M, Shumway C, Carter T, Shannon J. Evaluation of a simple method to screen soybean genotypes for salt tolerance. Crop Sci, 2008, 48: 2193–2199



[9]Abel G, Mackenzie A. Salt tolerance of soybean varieties (Glycine max Merrill) during germination and later growth. Crop Sci, 1964, 4: 157–161



[10]Chang R-Z(常汝镇), Chen Y-W(陈一舞), Shao G-H(邵桂花), Wan C-W(万超文). Effect of salt on agricultural characters and chemical quality of seed in soybeans. Soybean Sci (大豆科学), 1994, 13(2): 101–105 (in Chinese with English abstract)



[11]Shao G-H(邵桂花), Song J-Z(宋景芝), Liu H-L(刘惠令). Preliminary studies on the evaluation of salt tolerance in soybean varieties. Sci Agric Sin (中国农业科学), 1986, (6): 30–35 (in Chinese with English abstract)



[12]Wan J-M(万建民). Perspectives of molecular design breeding in crops. Acta Agron Sin (作物学报), 2006, 32(3): 455–462 (in Chinese with English abstract)



[13]Shao G-H(邵桂花). Relationship between the distribution of salt-tolerance soybean and salinity. Crops (作物杂志), 1988, (2): 34–36 (in Chinese with English abstract)



[14]Li X-H(李星华), Chen W-M(陈宛妹), Li Z-L(李增禄). Appraisal of salt tolerance of soybean germplasm in Shandong province. Shandong Agric Sci (山东农业科学), 1996, (4): 11–13 (in Chinese with English abstract)



[15]Lee G J, Boerma H, Villagarcia M, Zhou X, Carter T, Li J Z, Gibbs M. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet, 2004, 109: 1610–1619



[16]Li H(李辉), Bai D(白丹), Zhang Z(张卓), Guo P(郭平), Zhou C(周婵), Wu L(乌兰). Correlation analysis between SPAD value and chlorophyll content of leaf of leymus chinensis. Chin Agric Sci Bull (中国农学通报), 2012, 28(2): 27–30 (in Chinese with English abstract)



[17]Aladdin H, Xu D H. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed Sci, 2008, 58: 355–359



[18]Maris P, Eduardo B. Na+ transport in plants. FEBS Lett, 2007, 581: 2247–2254



[19]Yu B-J(於丙军), Luo Q-Y(罗庆云), Liu Y-L(刘有良). Re-transportation of ions in Glycine soja and Glycine max seedlings under NaCl stress. J Plant Physiol, 2003, 29: 39–44



[20]Wolf O, Munns R, Tonnet M L, Jeschke W D. The role of the stem in the partitioning of Na+ and K+ in salt-treated barley. J Exp Bot, 1991, 42: 697–704



[21]Lacan D, Durand M. Na+ and K+ transport in excised soybean roots. Plant Physiol, 1995, 93: 132–138



[22]Lacan D, Durand M. Na+-K+ exchange at the xylem/symplast boundary. Plant Physiol, 1996, 110: 705–711



[23]Yang X-Y(杨晓英), Zhang W-H(章文华), Wang Q-Y(王庆亚), Liu Y-L(刘友良). Salt tolerance of wild soybeans in Jiangsu and its relation with ionic distribution and selective transportation. Chin J Appl Ecol (应用生态学报). 2003, 14(12): 2237–2240



[24]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91: 503–527



[25]Luo Q-Y(罗庆云), Yu B-J(於丙军), Liu Y- L(刘有良). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol, 2005, 162: 1003–1012



[26]Essa T A. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci, 2002, 188: 86–93
[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!