欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1739-1745.doi: 10.3724/SP.J.1006.2013.01739

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆腺苷酸激酶基因GmADK的克隆与表达分析

盖江涛,赵团结,李艳*,盖钧镒*   

  1. 南京农业大学大豆研究所 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室 / 作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2013-01-18 修回日期:2013-05-24 出版日期:2013-10-12 网络出版日期:2013-07-31
  • 通讯作者: 李艳, E-mail: yanli1@njau.edu.cn; 盖钧镒, E-mail: sir@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB1093), 国家自然科学基金项目(31071442), 农业部大豆生物学与遗传育种创新团队, 农业部公益性行业专项(200803060), 江苏省优势学科建设工程专项和国家重点实验室自主课题和国家现代农业产业技术体系建设专项(CARS-04)资助。

Cloning and Expression Analysis of an Adenylate Kinase Gene GmADK in Soybean

GAI Jiang-Tao,ZHAO Tuan-Jie,LI Yan*,GAI Jun-Yi*   

  1. Soybean Research Institute / National Center for Soybean Improvement / MOA Key Laboratory for Biology and Genetic Improvement of Soybean (General) / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2013-01-18 Revised:2013-05-24 Published:2013-10-12 Published online:2013-07-31
  • Contact: 李艳, E-mail: yanli1@njau.edu.cn; 盖钧镒, E-mail: sir@njau.edu.cn

摘要:

腺苷酸激酶(adenylate kinaseADK)催化ATP+AMP2ADP的可逆反应,是维持细胞能量动态平衡的关键酶,在植物中参与调节生长发育和逆境应答等过程。目前有关大豆ADK的研究还未见报道。本文通过RT-PCR方法,从耐盐大豆品种南农1138-2的叶中克隆到一个腺苷酸激酶基因,命名为GmADKGmADK的编码区序列(coding DNA sequence, CDS)804 bp,编码267个氨基酸。预测其蛋白结构含有典型的腺苷酸激酶功能域ATP-AMP(Ap5A)结合位点和AMP结合位点。蛋白序列比对和进化树分析表明,大豆与菜豆(Phaseolus vulgaris)和蒺藜苜蓿(Medicago truncatula)中的ADK序列相似性最高,亲缘关系最近。组织表达显示GmADK基因的表达量在大豆叶和根中高于茎中。荧光定量PCR分析表明GmADK的表达受盐胁迫的调节,且在耐盐(南农1138-2)和盐敏感(科丰1)品种间存在差异。在叶和根中, 200 mmol L–1 NaCl处理61224 h后,GmADK的表达量在盐敏感品种中比未处理对照有所降低,但在耐盐品种中却比未处理对照升高,因此推测GmADK可能参与大豆对盐胁迫的响应。

关键词: 大豆 (Glycine max (L.) Merr.), 腺苷酸激酶, 基因克隆, 盐胁迫

Abstract:

Adenylate kinase (ADK) is an important enzyme in cellular energy homeostasis, which catalyzes the interconversion of adenine nucleotides, ATP+AMP2ADP, and is involved in many processes including plant growth, development and response to abiotic stresses. To date, there has no report on cloning and expression analysis of soybean ADK gene yet. In this study, a soybean ADK gene was cloned from the leaves of a salt tolerant cultivar NN1138-2 using RT-PCR, and was designated as GmADK. The coding sequence (CDS) of this cloned ADK gene is 804 bp in length, encoding a polypeptide of 267 amino acids. Its protein was predicted to be located in plastids, containing a typical ATP-AMP (Ap5A) binding site and an AMP binding site. Multiple sequence alignments and phytogenetic analysis of ADK proteins showed GmADK is most similar with ADK from Phaseolus vulgarisand Medicago truncatula. Tissue expression pattern of GmADK showed its mRNA was more abundant in soybean roots and leaves than in stems. Quantitative RT-PCR showed a differential expression pattern of GmADK in response to salt between salt tolerant (NN1138-2) and sensitive (Kefeng-1) soybean genotypes. Compared with untreated plants, the expression of GmADK in both leaves and roots was repressed after 6, 12, and 24 hours of 200 mmol L–1 NaCl treatment in the salt sensitive cultivar, but induced in the salt tolerant cultivar, indicating that GmADK might be involved in soybean response to salt stress.

Key words: Soybean (Glycine max [L.] Merr.), Adenylate kinase (ADK), Gene cloning, Salt stress

[1]Tan Z-W(谭志文), Liu J(刘俊), Zhang X-F(张学芳), Meng F-G(孟凡国), Zhang Y-Z(张耀洲). Expression, purification and enzymatic characterization of adenylate kinase of Thermus thermophilus HB27 in Escherichia coli. J Southern Med Univ (南方医科大学学报), 2010, 30(1): 1–6 (in Chinese with English abstract)



[2]Declerck P J, Muller M. Hydrogenosomal ATP:AMP phosphotransferase of Trichomonas vaginalis. Comp Biochem Physiol B, 1987, 88: 575–580



[3]Chen B, Sysoeva T A, Chowdhury S, Guo L, Nixon B T. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli. FEBS J, 2009, 276: 807–815



[4]Goldberg R N, Tewari Y B, Bhat T N. Thermodynamics of enzyme-catalyzed reactions—a database for quantitative biochemistry. Bioinformatics, 2004, 20: 2874–2877



[5]Pradet A, Raymond P. Adenine nucleotide ratios and adenylate energy charge in energy metabolism. Annu Rev Plant Biol, 1983, 34: 199–224



[6]Atkinson D E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry, 1968, 7: 4030–4034



[7]Schlattner U, Wagner E, Greppin H, Bonzon M. Chloroplast adenylate kinase from tobacco: Purification and partial characterization. Phytochemistry, 1996, 42: 589–594



[8]Ching T M, Crane J M. Adenylate energy pool and energy charge in maturing rape seeds. Plant Physiol, 1974, 54: 748–751



[9]Raymond P, Pradet A. Stabilization of adenine nucleotide ratios at various values by an oxygen limitation of respiration in germinating lettuce (Lactuca sativa) seeds. Biochem J, 1980, 190: 39–44



[10]Birkenhead K, Walker D, Foyer C. The intracellular distribution of adenylate kinase in the leaves of spinach, wheat and barley. Planta, 1982, 156: 171–175



[11]Schlattner U, Wagner E, Greppin H, Bonzon M. Adenylate kinase in tobacco cell cultures: II. Variability and regulation of isoform activity patterns in different cell lines. J Plant Physiol, 1994, 144: 400–409



[12]Kleczkowski L A, Randall D D. Equilibration of adenylates by maize leaf adenylate kinase: effects of magnesium on apparent and true equilibria. J Exp Bot, 1991, 42: 537–540



[13]Regierer B, Fernie A R, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossmann J. Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol, 2002, 20: 1256–1260



[14]Zancani M, Casolo V, Vianello A, Francesco Macr??. Involvement of apyrase in the regulation of the adenylate pool by adenylate kinase in plant mitochondria. Plant Sci, 2001, 161: 927–933



[15]Kawai M, Uchimiya H. Biochemical properties of rice adenylate kinase and subcellular location in plant cells. Plant Mol Biol, 1995, 27: 943–951



[16]Xu B-N(徐柏年), Zhang T-Y(张添元), Luo J-X(罗进贤), Wu Q(吴青), Wu J-X(吴江雪). Expression of ADK Gene and ATP Synthesis in Saccharomyces cerevisiae. Acta Sci Nat Univ Sunyatseni (中山大学学报?自然科学版), 2000, (5): 1–4 (in Chinese with English abstract)



[17]Carrari F, Coll-Garcia D, Schauer N, Lytovchenko A, Palacios-Rojas N, Balbo I, Rosso M, Fernie A R. Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiol, 2005, 137: 70–82



[18]Peterson T A, Nieman R H, Clark R A. Nucleotide Metabolism in Salt-Stressed Zea mays L. Root Tips: I. Adenine and Uridine Nucleotides. Plant Physiol, 1987, 85: 984–989



[19]Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot, 2010, 61: 3563–3575



[20]Chen H-T(陈华涛), Chen X(陈新), Yu D-Y(喻德跃). Inheritance analysis and mapping quantitative trait loci (QTLs) associated with salt tolerance during seedling growth in soybean. Chin J Oil Crop Sci (中国油料作物学报), 2011, 33(3): 231–234 (in Chinese with English abstract)



[21]Berry M B, Phillips G N Jr. Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins, 1998, 32: 276–288



[22]Birkenhead K, Walker D, Foyer C H. The intracellular distribution of adenylate kinase in the leaves of spinach, wheat and barley. Planta, 1982, 156: 171–175



[23]Hampp R, Goller M, Ziegler H. Adenylate levels, energy charge, and phosphorylation potential during dark-light and light-dark transition in chloroplasts, mitochondria, and cytosol of mesophyll protoplasts from Avena sativa L. Plant Physiol, 1982, 69: 448– 455



[24]Stitt M, Lilley R M, Heldt H W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol, 1982, 70: 971–977



[25]Lange P R, Geserick C, Tischendorf G, Zrenner R. Functions of chloroplastic adenylate kinases in Arabidopsis. Plant Physiol, 2008, 146: 492–504



[26]Zhou S P, Wei S, Boone B, Levy S. Microarray analysis of genes affected by salt stress in tomato. Afr J Environ Sci Technol, 2007, 1: 014–026
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[6] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[7] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[8] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[9] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[10] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[11] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[12] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[13] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[14] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[15] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!