作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1962-1969.doi: 10.3724/SP.J.1006.2013.01962
范昕琦,刘章伟,冯娟,徐鹏,张香桂,沈新莲*
FAN Xin-Qi,LIU Zhang-Wei,FENG Juan,XU Peng,ZHANG Xiang-Gui,SHEN Xin-Lian*
摘要:
盐胁迫是影响作物生长和发育的重要因素之一。一些棉属野生种具有较好的耐盐性, 是开展棉花耐盐性机制研究以及改良陆地棉耐盐性的重要资源。本研究基于cDNA-AFLP技术分离获得的旱地棉(Gossypium aridum)盐胁迫下差异表达片段序列信息, 经电子克隆技术和RT-PCR方法克隆了旱地棉苏氨酸醛缩酶基因cDNA全长, 命名为GarTHA (GenBank登录号为KC167360)。该cDNA全长为1 018 bp, 包含一个822 bp的完整ORF, 编码273个氨基酸残基, 蛋白质分子量为82.57 kD, 等电点为4.89。GarTHA基因与杨树PtTHA基因同源性最高, 为84.6%。为进一步验证其功能, 利用拟南芥逆境胁迫启动子rd29A构建植物表达载体, 将GarTHA基因的完整ORF转入拟南芥中, 获得转基因植株并进行了耐盐性鉴定。结果表明, 在盐胁迫下转基因拟南芥种子的发芽率明显高于野生型, 且转基因植株的根长显著高于野生型。说明GarTHA基因可能参与植物的盐胁迫反应, 从而提高植物抗逆性。
[1]Zhao K-F(赵可夫), Feng L-T(冯立田). Halophytes Resources of China. Beijing: Science Press, 2001. pp 32–43 (in Chinese)[2]Guo Y H, Yu Y P, Wang D, Wu C A, Yang G D, Huang J G, Zheng C C. GhZFP1, a novel CCCH-type zinc finger protein from cot-ton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol, 2009, 183: 62–75[3]Huang B, Jin L, Liu J Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cot-ton (Gossypium hirsutum). J Plant Physiol, 2008, 165: 214–223[4]Yang Y-W(杨郁文), Ni W-C(倪万潮), Zhang B-L(张保龙), Shen X-L(沈新莲), Zhang X-G(张香桂), Xu Y-J(徐英俊), Yao S(姚姝). Molecular cloning and expression analysis of a serine/ threonine protein kinase gene in upland cotton. Cotton Sci (棉花学报), 2006, 18(3): 140–144 (in Chinese with English abstract) [5]Haake V, Cook D, Riechmann J, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639–648[6]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273[7]Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Charac-terization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67: 169–181[8]Shi H Z, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21: 81–85[9]Wu C A, Yang G D, Meng Q W, Zheng C C. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol, 2004, 45: 600–607[10]Kopka J, Pical C, Gray J E, Rober M B. Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol, 1998, 116: 239–250[11]Babu R C, Zhang J X, Blum A, David-Ho T H, Wu R, Nguyen H T. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci, 2004, 166: 855–862[12]Imai R, Chang L, Ohta A, Bray E, Takagi M. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene, 1996, 170: 243–248[13]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Bio-technol, 1999, 17: 287–291[14]Xu D, Duan X, Wang B, Hong B, Ho T H D, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from bar-ley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249–257[15]Guan L M, Zhao J, Scadalios J G. Cis-elements and transfactors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely interme-diary signaling molecule for the response. Plant, 2000, 22: 87–95[16]Prasad T K, Anderson M D, Martin B A, Steward C R. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65–74[17]Zhang X, Zhang L, Dong F, Gao J, Galbraith D W, Song C P. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol, 2001, 126: 1438–1448[18]Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthe-sis in root tips of wheat seedlings. Plant Physiol, 2001, 28: 1055–1061[19]Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li W X, Iida K, Kapoor A, Pikaard C S, Zhu J K. ROS3 is an RNA-binding pro-tein required for DNA demethylation in Arabidopsis. Nature, 2008, 455: 1259–1262[20]Hanson A D, May A M, Grumet R, Bode J, Jamieson G C, Rho-des D. Betaine synthesis in chenopods: localization in chloro-plasts. Proc Natl Acad Sci USA, 1985, 82: 3678–3682[21]McCue K F, Hanson A D. Drought and salt tolerance: towards understanding and application. Trends Biotechnol, 1990, 8: 358–362[22]Alloing G, Travers I, Sagot B, Le Rudulier D, Dupont L. Proline betaine uptake in Sinorhizobium meliloti: characterization of Prb, an Opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol, 2006, 188: 6308–6317[23]Ashraf M, Foolad M. Roles of glycine betaine and proline in im-proving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206–216[24]Li Q L, Gao X R, Yu X H, Wang X Z, An L J. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett, 2003, 25: 1431–1436[25]Waditee R, Bhuiyan M N H, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf A T, Takabe T. Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA, 2005, 102: 1318–1323[26]Luo X-L(罗晓丽), Xiao J-L(肖娟丽), Wang Z-A(王志安), Zhang A-H(张安红), Tian Y-C(田颖川), Wu J-H(吴家和). Overexpres-sion of Spinacia oleracea betaine aldehyde dehydrogenase (So-BADH) gene confers the salt and cold tolerant in Gossypium hir-sutum L. Chin J Biotech (生物工程学报), 2008, 24(8): 1464–1469 (in Chinese with English abstract)[27]Liu J Q, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H. Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Es-cherichia coli. Eur J Biochem, 1998, 255: 220–226[28]Liu Z W, Feng J, Fan X Q, Xu P, Zhang X G, Shen X L. cDNA-AFLP analysis of differentially-expressed gene in resp¬onse to salt stress in Gossypium airdum. Cotton Sci, 2012, 24: 435–443[29]Harrison S J, Mott E K, Parsley K, Aspinall S, Gray J C, Cottage A. A rapid and robust method of identifying transformed Arabi-dopsis thaliana seedlings following floral dip transfor¬mation. Plant Methods, 2006, 2: 19[30]Hu G-H(胡根海), Yu S-X(喻树迅). Extraction of high-quality total RNA in cotton leaf with improved CTAB method. Cotton Sci (棉花学报), 2007, 19(1): 69–70 (in Chinese with English ab-stract)[31]Feng J(冯娟), Fan X-Q(范昕琦) Xu P(徐鹏), Zhang X-G(张香桂), Shen X-L(沈新莲). Isolation and functional analysis of GarCIPK8 gene from Gossypium aridum. Acta Agron Sin (作物学报), 2013, 39(1): 1–9 (in Chinese with English abstract)[32]Luo Z-Y(罗宗雅), Tang Y-Z(汤玉璋). Nitrogen metabolism in higher plants. Biochem Biophys (生物化学与生物物理学报), 1964, 4(5): 391–454 (in Chinese)[33]Herbert D, Walker K A, Price L J, Cole D J, Pallett K E, Ridley S M, Harwood J L. Acetyl-CoA carboxylase—a graminicide target site. Pesticide Sci, 1997, 50: 67–71[34]Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotin-containing carboxylases. Arch Biochem Biophy, 2003, 414: 211–222[35]Gronwald J W. Lipid biosynthesis inhibitors. Weed Sci, 1991, 39: 435–449[36]Turner J A, Pernich D J. Origin of enantiomeric selectivity in the aryloxyphenoxypropionic acid class of herbicidal acetyl coen-zyme A carboxylase (ACCase) inhibitors. J Agric Food Chem, 2002, 50: 4554–4566[37]Qiao M(乔孟), Yu Y-C(于延冲), Xiang F-N(向凤宁). The roles of the Arabidopsis R2R3-MYB transcription factors in the stress responses. Chin Bull Life Sci (生命科学), 2009, 21(1): 145–150 (in Chinese with English abstract)[38]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Bio-technol, 1999, 17: 287–291[39]Zhu L-P(朱丽萍), Yu Z(于壮), Zou C-X(邹翠霞), Li Q-L(李秋莉). Plant stress-inducible promotors and their function. Heredi-tas (遗传), 2010, 32(3): 229–234 (in Chinese with English ab-stract)[40]Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D. Stress induced ex-pression in wheat of the Arabidopsis thaliana DREB1A gene de-lays water stress symptoms under greenhouse conditions. Ge-nome, 2004, 47: 493–500 |
[1] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[2] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[3] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[4] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[5] | 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393. |
[6] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[7] | 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358. |
[8] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[9] | 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744. |
[10] | 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8. |
[11] | 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247. |
[12] | 李菲,刘亮,张浩,王清涛,郭丽丽,郝立华,张茜茜,曹旭,梁伟佳,郑云普. CO2浓度对大豆叶片气孔特征和气体交换参数的影响[J]. 作物学报, 2018, 44(8): 1212-1220. |
[13] | 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020. |
[14] | 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848. |
[15] | 马立功,张匀华,孟庆林,石凤梅,刘佳,李易初,王志英. 向日葵病程相关蛋白HaPR1基因的克隆与功能研究[J]. 作物学报, 2015, 41(12): 1819-1827. |
|