欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1962-1969.doi: 10.3724/SP.J.1006.2013.01962

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉属野生种旱地棉苏氨酸醛缩酶基因GarTHA的克隆及功能验证

范昕琦,刘章伟,冯娟,徐鹏,张香桂,沈新莲*   

  1. 江苏省农业科学院经济作物研究所 / 农业部长江下游棉花与油菜重点实验室, 江苏南京210014
  • 收稿日期:2013-03-29 修回日期:2013-06-09 出版日期:2013-11-12 网络出版日期:2013-07-31
  • 通讯作者: 沈新莲, E-mail: xlshen68@126.com
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08005-004-002)和江苏省农业科技自主创新基金项目(CX(11)1201)资助。

Cloning and Functional Analysis of GarTHA Gene from Gossypium aridum

FAN Xin-Qi,LIU Zhang-Wei,FENG Juan,XU Peng,ZHANG Xiang-Gui,SHEN Xin-Lian*   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing 210014, China
  • Received:2013-03-29 Revised:2013-06-09 Published:2013-11-12 Published online:2013-07-31
  • Contact: 沈新莲, E-mail: xlshen68@126.com

摘要:

盐胁迫是影响作物生长和发育的重要因素之一。一些棉属野生种具有较好的耐盐性, 是开展棉花耐盐性机制研究以及改良陆地棉耐盐性的重要资源。本研究基于cDNA-AFLP技术分离获得的旱地棉(Gossypium aridum)盐胁迫下差异表达片段序列信息, 经电子克隆技术和RT-PCR方法克隆了旱地棉苏氨酸醛缩酶基因cDNA全长, 命名为GarTHA (GenBank登录号为KC167360)。该cDNA全长1 018 bp, 包含一个822 bp的完整ORF, 编码273个氨基酸残基, 蛋白质分子量为82.57 kD, 等电点为4.89GarTHA基因与杨树PtTHA基因同源性最高, 84.6%为进一步验证其功能, 利用拟南芥逆境胁迫启动子rd29A构建植物表达载体, GarTHA基因的完整ORF转入拟南芥中, 获得转基因植株并进行了耐盐性鉴定。结果表明, 在盐胁迫下转基因拟南芥种子的发芽率明显高于野生型, 且转基因植株的根长显著高于野生型。说明GarTHA基因可能参与植物的盐胁迫反应, 从而提高植物抗逆性。

关键词: 旱地棉, 苏氨酸醛缩酶, 耐盐性, 结构特征, 功能分析

Abstract:

Salinity stress is one of the most important factors that impede the growth and development of various crops. Some Gossypium wild species with tolerance to high salinity are valuable germplasm resource for studying salt tolerance mechanism in Gossypium and improving salinity resistance in upland cotton. In the previous study, we obtained a differential expression fragment by comparing differential expression transcript under stress treatment in diploid G. aridum species using cDNA-AFLP technique. In this study, using the partial cDNA sequences as queries, the Gossypium EST database was screened and the corresponding cDNA sequence containing a complete ORF was assembled. As a result, a novel gene, encoding G. aridum threonine aldolase, was cloned. The gene was designated as GarTHA (G. aridum THA;GenBank accession number: KC167360). The ORF of GarTHA was 822 bp encoding 273 amino acid residues with a predicted molecular weight of 82.57 kD and a predicted isoelectric point of 4.89. The GarTHA showed the highest similarity of 84.6% with poplar PtTHA. To characterize its putative function, we transgenic the ORF of GarTHA gene driven by rd29A promoter into Arabidopsis. The growth of transgenic plants was observed under salinity stress. The seed germination rate and root length of transgenic Arabidopsis were significantly higher than those of the wild type plants under salt stress. The results showed that GarTHA gene could improve salt resistance in plants.

Key words: 旱地棉, 苏氨酸醛缩酶, 耐盐性, 结构特征, 功能分析

[1]Zhao K-F(赵可夫), Feng L-T(冯立田). Halophytes Resources of China. Beijing: Science Press, 2001. pp 32–43 (in Chinese)

[2]Guo Y H, Yu Y P, Wang D, Wu C A, Yang G D, Huang J G, Zheng C C. GhZFP1, a novel CCCH-type zinc finger protein from cot-ton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol, 2009, 183: 62–75

[3]Huang B, Jin L, Liu J Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cot-ton (Gossypium hirsutum). J Plant Physiol, 2008, 165: 214–223

[4]Yang Y-W(杨郁文), Ni W-C(倪万潮), Zhang B-L(张保龙), Shen X-L(沈新莲), Zhang X-G(张香桂), Xu Y-J(徐英俊), Yao S(姚姝). Molecular cloning and expression analysis of a serine/ threonine protein kinase gene in upland cotton. Cotton Sci (棉花学报), 2006, 18(3): 140–144 (in Chinese with English abstract)

[5]Haake V, Cook D, Riechmann J, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639–648

[6]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273

[7]Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Charac-terization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67: 169–181

[8]Shi H Z, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21: 81–85

[9]Wu C A, Yang G D, Meng Q W, Zheng C C. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol, 2004, 45: 600–607

[10]Kopka J, Pical C, Gray J E, Rober M B. Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol, 1998, 116: 239–250

[11]Babu R C, Zhang J X, Blum A, David-Ho T H, Wu R, Nguyen H T. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci, 2004, 166: 855–862

[12]Imai R, Chang L, Ohta A, Bray E, Takagi M. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene, 1996, 170: 243–248

[13]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Bio-technol, 1999, 17: 287–291

[14]Xu D, Duan X, Wang B, Hong B, Ho T H D, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from bar-ley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249–257

[15]Guan L M, Zhao J, Scadalios J G. Cis-elements and transfactors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely interme-diary signaling molecule for the response. Plant, 2000, 22: 87–95

[16]Prasad T K, Anderson M D, Martin B A, Steward C R. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65–74

[17]Zhang X, Zhang L, Dong F, Gao J, Galbraith D W, Song C P. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol, 2001, 126: 1438–1448

[18]Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthe-sis in root tips of wheat seedlings. Plant Physiol, 2001, 28: 1055–1061

[19]Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li W X, Iida K, Kapoor A, Pikaard C S, Zhu J K. ROS3 is an RNA-binding pro-tein required for DNA demethylation in Arabidopsis. Nature, 2008, 455: 1259–1262

[20]Hanson A D, May A M, Grumet R, Bode J, Jamieson G C, Rho-des D. Betaine synthesis in chenopods: localization in chloro-plasts. Proc Natl Acad Sci USA, 1985, 82: 3678–3682

[21]McCue K F, Hanson A D. Drought and salt tolerance: towards understanding and application. Trends Biotechnol, 1990, 8: 358–362

[22]Alloing G, Travers I, Sagot B, Le Rudulier D, Dupont L. Proline betaine uptake in Sinorhizobium meliloti: characterization of Prb, an Opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol, 2006, 188: 6308–6317

[23]Ashraf M, Foolad M. Roles of glycine betaine and proline in im-proving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206–216

[24]Li Q L, Gao X R, Yu X H, Wang X Z, An L J. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett, 2003, 25: 1431–1436

[25]Waditee R, Bhuiyan M N H, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf A T, Takabe T. Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA, 2005, 102: 1318–1323

[26]Luo X-L(罗晓丽), Xiao J-L(肖娟丽), Wang Z-A(王志安), Zhang A-H(张安红), Tian Y-C(田颖川), Wu J-H(吴家和). Overexpres-sion of Spinacia oleracea betaine aldehyde dehydrogenase (So-BADH) gene confers the salt and cold tolerant in Gossypium hir-sutum L. Chin J Biotech (生物工程学报), 2008, 24(8): 1464–1469 (in Chinese with English abstract)

[27]Liu J Q, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H. Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Es-cherichia coli. Eur J Biochem, 1998, 255: 220–226

[28]Liu Z W, Feng J, Fan X Q, Xu P, Zhang X G, Shen X L. cDNA-AFLP analysis of differentially-expressed gene in resp¬onse to salt stress in Gossypium airdum. Cotton Sci, 2012, 24: 435–443

[29]Harrison S J, Mott E K, Parsley K, Aspinall S, Gray J C, Cottage A. A rapid and robust method of identifying transformed Arabi-dopsis thaliana seedlings following floral dip transfor¬mation. Plant Methods, 2006, 2: 19

[30]Hu G-H(胡根海), Yu S-X(喻树迅). Extraction of high-quality total RNA in cotton leaf with improved CTAB method. Cotton Sci (棉花学报), 2007, 19(1): 69–70 (in Chinese with English ab-stract)

[31]Feng J(冯娟), Fan X-Q(范昕琦) Xu P(徐鹏), Zhang X-G(张香桂), Shen X-L(沈新莲). Isolation and functional analysis of GarCIPK8 gene from Gossypium aridum. Acta Agron Sin (作物学报), 2013, 39(1): 1–9 (in Chinese with English abstract)

[32]Luo Z-Y(罗宗雅), Tang Y-Z(汤玉璋). Nitrogen metabolism in higher plants. Biochem Biophys (生物化学与生物物理学报), 1964, 4(5): 391–454 (in Chinese)

[33]Herbert D, Walker K A, Price L J, Cole D J, Pallett K E, Ridley S M, Harwood J L. Acetyl-CoA carboxylase—a graminicide target site. Pesticide Sci, 1997, 50: 67–71

[34]Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotin-containing carboxylases. Arch Biochem Biophy, 2003, 414: 211–222

[35]Gronwald J W. Lipid biosynthesis inhibitors. Weed Sci, 1991, 39: 435–449

[36]Turner J A, Pernich D J. Origin of enantiomeric selectivity in the aryloxyphenoxypropionic acid class of herbicidal acetyl coen-zyme A carboxylase (ACCase) inhibitors. J Agric Food Chem, 2002, 50: 4554–4566

[37]Qiao M(乔孟), Yu Y-C(于延冲), Xiang F-N(向凤宁). The roles of the Arabidopsis R2R3-MYB transcription factors in the stress responses. Chin Bull Life Sci (生命科学), 2009, 21(1): 145–150 (in Chinese with English abstract)

[38]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Bio-technol, 1999, 17: 287–291

[39]Zhu L-P(朱丽萍), Yu Z(于壮), Zou C-X(邹翠霞), Li Q-L(李秋莉). Plant stress-inducible promotors and their function. Heredi-tas (遗传), 2010, 32(3): 229–234 (in Chinese with English ab-stract)

[40]Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D. Stress induced ex-pression in wheat of the Arabidopsis thaliana DREB1A gene de-lays water stress symptoms under greenhouse conditions. Ge-nome, 2004, 47: 493–500

[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[3] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[4] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[5] 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393.
[6] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[7] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358.
[8] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[9] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[10] 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8.
[11] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[12] 李菲,刘亮,张浩,王清涛,郭丽丽,郝立华,张茜茜,曹旭,梁伟佳,郑云普. CO2浓度对大豆叶片气孔特征和气体交换参数的影响[J]. 作物学报, 2018, 44(8): 1212-1220.
[13] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[14] 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848.
[15] 马立功,张匀华,孟庆林,石凤梅,刘佳,李易初,王志英. 向日葵病程相关蛋白HaPR1基因的克隆与功能研究[J]. 作物学报, 2015, 41(12): 1819-1827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!