作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1952-1961.doi: 10.3724/SP.J.1006.2013.01952
张小红1,许鹏博1,2,郭萌萌1,2,徐兆师2,李连城2,陈明2,*,马有志2
ZHANG Xiao-Hong1,XU Peng-Bo1,2,GUO Meng-Meng1,2,XU Zhao-Shi2,LI Lian-Cheng2,CHEN Ming2,*,MA You-Zhi2
摘要:
拟南芥G蛋白复合体(异源三聚体包括α、β、γ亚基)参与植物多个信号转导途径,G蛋白复合体通过膜上的G蛋白偶联受体(GPCR)接受胞外信号后通过3个亚基将信号传递给下游效应器。目前,有关植物G蛋白复合体的效应器及其信号传递途径的报道较少,寻找新的G蛋白的效应器有助于阐明G蛋白复合体相关的信号传导途径。本研究以拟南芥G蛋白α亚基GPA1为诱饵蛋白,利用泛素分离系统筛选拟南芥cDNA文库,获得一个与GPA1互作的铜离子结合蛋白AtBCB。荧光双分子杂交(BiFC)试验证明,GPA1与AtBCB的互作发生在细胞膜上。基因表达特性分析结果显示,GPA1和AtBCB受金属铝胁迫的诱导表达。进一步以野生型拟南芥(WT)、GPA1拟南芥突变体gpa1-4和AtBCB拟南芥突变体bcb为材料,研究该基因对植物耐金属铝胁迫的功能,结果显示,在无胁迫情况下,2个突变体和WT根部的丙二醛含量无显著差异;在100 µmol L–1 Al3+处理下,gpa1-4突变体根部丙二醛含量显著(P<0.05)低于WT低;bcb根部丙二醛含量极显著(P<0.01)高于WT。对3个铝胁迫响应基因(苹果酸转运体基因AtALMT1、半类型ABC转运蛋白基因ALS1和ABC转运蛋白基因ALS3)的表达进行Real-time PCR分析,比较它们在突变体和野生型之间的表达差异,发现在有铝和无铝处理情况下,ALS1和ALS3的表达水平在突变体和WT间均无显著差异;在铝处理下,gpa1-4中AtALMT1的表达量极显著高于WT;在bcb中的表达量显著低于WT。以上结果表明,植物通过细胞膜上的G蛋白α亚基GPA1和铜离子结合蛋白AtBCB的相互作用调控下游基因AtALMT1的表达,参与植物对铝胁迫的响应,其中GPA1对铝胁迫耐受起负向作用,AtBCB对铝胁迫耐受起正向作用。
[1]Chakravorty D, Trusov Y, Zhang W, Acharya B R, Sheahan M B, McCurdy D W, Assmann S M, Botella J R. An atypical heterotrimeric G-protein gamma-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J, 2011, 67: 840–851[2]Warpeha K M, Upadhyay S, Yeh J, Adamiak J, Hawkins S I, Lapik Y R, Anderson M B, Kaufman L S. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol, 2007, 143: 1590–1600[3]Botto J F, Ibarra S, Jones A M. The heterotrimeric G-protein complex modulates light sensitivity in Arabidopsis thaliana seed germination. Photochem Photobiol, 2009, 85: 949–954[4]Fox A R, Soto G C, Jones A M, Casal J J, Muschietti J P, Mazzella M A. Cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Mol Biol, 2012, 80: 315–324[5]Wang X Q, Ullah H, Jones A M, Assmann S M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 2001, 292: 2070–2072[6]Mudgil Y, Uhrig J F, Zhou J, Temple B, Jiang K, Jones A M. Arabidopsis N-MYC downregulated-like 1, a positive regulator of auxin transport in a G protein-mediated pathway. Plant Cell, 2009, 21: 3591–3609[7]Huang J, Taylor J P, Chen J G, Uhrig J F, Schnell D J, Nakagawa T, Korth K L, Jones A M. The plastid protein thylakoid formation 1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell, 2006, 18: 1226–1238[8]Assmann S M, Fan L M, Zhang W, Chen J G, Taylor J P, Jones A M. Abscisic acid regulation of guard-cell K+ and anion channels in G beta- and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci USA, 2008, 105: 8476–8481[9]Llorente F, Blanco C A, Rodriguez C S, Jorda L, Molina A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J, 2005, 43: 165–180[10]Lapik Y R, Kaufman L S. The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha subunit GPA1 and regulates seed germination and early seedling development. Sci STKE, 2003, 15: 1578–1590[11]Assmann S M, Pandey S. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell, 2004, 16: 1616–1632[12]Zhao J, Wang X. Arabidopsis phospholipase D alpha 1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. Sci Signal, 2004, 279: 1794–1800[13]Broder Y C, Katz S, Aronheim A. The ras recruitment system, a novel approach to the study of protein–protein interactions. Curr Biol, 1998, 8: 1121–1130[14]Hubsman M, Yudkovsky G, Aronheim A. A novel approach for the identification of protein–protein interaction with integral membrane proteins. Nucl Acids Res, 2001, 29: e18[15]Yuan G-L (苑国良). Characterizing Arabidopsis G Protein Interactors by Reverse Ras Recruitment System. PhD Disseratation of Shandong Agricultural University, 2009 (in Chinese with English abstract)[16]Kaufman L S, Warpeha K M, Gibbons J, Carol A, Slusser J, Tree R, Durham W. Adequate phenylalanine synthesis mediated by G protein is critical for protection from UV radiation damage in young etiolated Arabidopsis thaliana seedlings. Plant Cell Environ, 2008, 31: 1756–1770[17]Friedman E J, Wang H X, Jiang K, Perovic I, Deshpande A, Pochapsky T C, Temple B R S, Hicks S N, Harden T K, Jones A M. Aci-reduction dioxygenase1 (ARD1) is an effector of the heterotrimeric G protein beta subunit in Arabidopsis. 2011, 286: 30107–30118[18]Tsugama D, Liu H, Liu S, Takano T. Arabidopsis heterotrimeric G protein β subunit interacts with a plasma membrane 2C-type protein phosphatase, PP2C52. Biochimt Biophysica Acta (BBA)-Mol Cell Res, 2012: 2254–2260[19]Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA, 1998, 95: 5187–5192[20]Takumi S, Otani M, Shimada T. Effect of six promoter-intron combinations on transient reporter gene expression in einkorn, emmer and common wheat cells by particle bombardment. Plant Sci, 1994, 103: 161–166[21]Li M(李敏), Yang S(杨双), Ruan Y-Y(阮燕晔), Fan J-J(樊金娟), Zhang L-J(张立军). PCR identification Arabidopsis T-DNA mutant of atsuc3. Plant Physiol Commun (植物生理学通讯), 2006, 42(1): 91–94 (in Chinese)[22]Murphy A, Taiz L. A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis–ecotypic variation and copper-sensitive mutants. Plant Physiol, 1995, 108: 29–38[23]Ono K, Yamamoto Y, Hachiya A, Matsumoto H. Synergistic inhibition of growth by aluminum and iron of tobacco (Nicotiana tabacum L.) cells in suspension culture. Plant Cell Physiol, 1995, 36: 115–125[24]Van Gysel A, Van Montagu M, Inzé D. A negatively light-regulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copper-binding proteins. Gene, 1993, 136: 79–85[25]Richards K D, Schott E J, Sharma Y K, Davis K R, Gardner R C. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol, 1998, 116: 409–418[26]Ezaki B, Sasaki K, Matsumoto H, Nakashima S. Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot, 2005, 56: 2661–2671[27]Kochian L V. Cellular Mechanisms of Aluminum Toxicity and Resistance in Plants. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 237–260[28]Ezaki B, Gardner R C, Ezaki Y, Matsumoto H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol, 2000, 122: 657–666[29]Ezaki B, Katsuhara M, Kawamura M, Matsumoto H. Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol, 2001, 127: 918–927[30]Hoekenga O A, Maron L G, Piñeros M A, Cançado G M, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 9738–9743[31]Larsen P B, Geisler M J, Jones C A, Williams K M, Cancel J D. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J, 2004, 41: 353–363[32]Larsen P B, Cancel J, Rounds M, Ochoa V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta, 2007, 225: 1447–1458[33]Hamm H E. The many faces of G protein signaling. J Biol Chem, 1998, 273: 669–672[34]Adman E T. Structure and function of copper-containing proteins. Curr Opin Struct Biol, 1991, 1: 895–904[35]Joo J H, Wang S, Chen J, Jones A, Fedoroff N V. Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell Onl, 2005, 17: 957–970[36]Delhaize E, Ryan P R, Hebb D M, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA, 2004, 101: 15249–15254[37]Larsen P B, Degenhardt J, Tai C Y, Stenzler L M, Howell S H, Kochian L V. Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol, 1998, 117: 9–17[38]Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007, 104: 9900–9905[39]Xia J, Yamaji N, Kasai T, Ma J F. Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA, 2010, 107: 18381–18385 |
[1] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[2] | 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209. |
[3] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[4] | 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146. |
[5] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[6] | 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225. |
[7] | 杨列耿,杨曙,张永先,唐健,黎晓峰. 铝离子胁迫下大豆根尖柠檬酸的分泌及SGA1基因的表达[J]. 作物学报, 2015, 41(04): 666-670. |
[8] | 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766. |
[9] | 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726. |
[10] | 蔺芳芳,杨旭,武小翠,刘晓梅,葛荣朝,赵宝存. 利用分裂泛素酵母双杂交技术钓取小麦TaSC互作蛋白质[J]. 作物学报, 2013, 39(03): 423-430. |
[11] | 汤青林,许俊强,宋明,王志敏. 芥菜AP1基因体外表达及其与FLC相互作用的验证[J]. 作物学报, 2012, 38(07): 1328-1333. |
[12] | 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810. |
[13] | 杨静静, 李亚宁, 李星, 刘大群. 小麦与叶锈菌互作体系中G蛋白α、β亚基的表达及其与抗病蛋白和活性氧代谢的关系[J]. 作物学报, 2010, 36(12): 2028-2034. |
[14] | 宋健民,戴双,李豪圣,刘爱峰,程敦公,楚秀生,Ian J Tetlow,Michael J Emes. 小麦胚乳14-3-3蛋白的表达及其淀粉体淀粉合成酶的互作[J]. 作物学报, 2009, 35(8): 1445-1450. |
[15] | 马炳田;曲广林;黄文娟;林瑜凡;李仕贵. 大豆立枯丝核菌G蛋白ß亚基基因的克隆与分析[J]. 作物学报, 2009, 35(2): 370-374. |
|