欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1944-1951.doi: 10.3724/SP.J.1006.2013.01944

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaWRKY44基因的克隆、表达分析及功能鉴定

王瑞1,2,**,吴华玲3,**,王会芳1,2,黄珂1,2,霍春艳1,2,倪中福1,2,孙其信1,2,*   

  1. 1农业生物技术国家重点实验室 / 北京市作物遗传改良重点实验室 / 中国农业大学, 北京 100193; 2国家植物基因研究北京中心, 北京 100193; 3广东省农业科学院茶叶研究所, 广东广州 510640
  • 收稿日期:2013-03-18 修回日期:2013-06-25 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 孙其信, E-mail: qxsun@cau.edu.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08009-084B)资助,国家自然科学基金重大项目(31290210)和国家高技术研究发展计划(863计划)项目(2012AA10A309)资助。

Cloning, Characterization, and Functional Analysis of TaWRKY44 Gene from Wheat

WANG Rui1,2,**,WU Hua-Ling3,**,WANG Hui-Fang1,2,HUANG Ke1,2,HUO Chun-Yan1,2,NI Zhong-Fu1,2,SUN Qi-Xin1,2,*   

  1. 1 State Key Laboratory for Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement / China Agricultural University, Beijing 100193, China; 2 National Plant Gene Research Centre (Beijing), Beijing 100193, China; 3 Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
  • Received:2013-03-18 Revised:2013-06-25 Published:2013-11-12 Published online:2013-08-12
  • Contact: 孙其信, E-mail: qxsun@cau.edu.cn

摘要:

WRKY是植物特有的转录因子基因, 在植物对外界胁迫响应及生长发育的过程中发挥重要作用。本研究克隆了一个新的小麦WRKY转录因子基因TaWRKY44, 获得其全长cDNA, 其中开放阅读框长度为897 bp, 编码298个氨基酸。半定量RT-PCR的结果表明, TaWRKY44在叶片中表达水平较高, 并且受干旱和低温胁迫诱导表达。转基因功能分析结果表明, TaWRKY44的拟南芥超表达株系叶片变小, 叶柄缩短, 并且叶片细胞也明显小于野生型。另外, 转基因系对ABA、干旱和盐等胁迫处理的敏感性也高于野生型, 说明该基因可能作为一个转录抑制子参与逆境胁迫信号转导过程。

关键词: 小麦, WRKY, 基因表达, 叶片, 逆境胁迫, 功能分析

Abstract:

WRKY transcription factors are specific in plants and related in response to stress as well as plant development. In this study, we cloned the full-length cDNA of a new WRKY transcription factor gene, TaWRKY44, from wheat (Triticum aestivum L.). The open reading frame of TaWRKY44 is 897 bp in length, which encodes 298 animo acid residues. The semi-quantitative RT-PCR result indicated that TaWRKY44 was highly expressed in leaf, and responsive to drought and clod stresses. TaWRKY44 over-expressed lines of Arabidopsis exhibited smaller leaves, shorter leaf petioles, and smaller leaf epidermis cell than the wild type. In addition, the transgenic lines were more sensitive to abscisic acid, drought, and salt stresses. These results indicated TaWRKY44 could be a negative regulator in stress signal transduction pathway.

Key words: Wheat, WRKY, Gene expression, Leaf, Abiotic stress, Functional analysis

[1]Rushton P J, Macdonald H, Huttly A K, Lazarus C M, Hooley R. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-AMY2 genes. Plant Mol Biol, 1995, 29: 691–702



[2]Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res, 2005, 12: 9–26



[3]Wei K F, Chen J, Chen Y F, Wu L J, Xie D X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res, 2012, pp. 1–12



[4]Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156–1170



[5]Wu H, Ni Z, Yao Y, Guo G, Sun Q. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Pro Nat Sci, 2008, 18: 697–705



[6]Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol, 2004, 55: 399–416



[7]Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J, 2013, DOI: 10.1111/tpj.12159



[8]Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol, 2004, 135: 507–515



[9]Hinderhofer K, Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta, 2001, 213: 469-473



[10]Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J, 2001, 28: 123–133



[11]Tsuge T, Tsukaya H, Uchimiya H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development, 1996, 122: 1589–1600



[12]Kim G T, Tsukaya H, Uchimiya H. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev, 1998, 12: 2381–2391



[13]Kim G T, Tsukaya H, Saito Y, Uchimiya H. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc Natl Acad Sci USA, 1999, 96: 9433–9437



[14]Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2000, 97: 9783–9788



[15]Kim G T, Shoda K, Tsuge T, Cho K H, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J, 2002, 21: 1267–1279



[16]Hu Y, Poh H M, Chua N H. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J, 2006, 7: 1–9



[17]Szecsi J, Joly C, Bordji K, Varaud E, Cock J M, Dumas C, Bendahmane M. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J, 2006, 5: 3912–3920



[18]Kurepa J, Wang S, Li Y, Zaitlin D, Pierce A J, Smalle J A. Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. Plant Physiol, 2009, 150: 178–189



[19]Sonoda Y, Sako K, Maki Y, Yamazaki N, Yamamoto H, Ikeda A, Yamaguchi J. Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. Plant J, 2009, 60: 68–78



[20]Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact, 2007, 20: 492–499



[21]Kang K, Park S, Natsagdorj U, Kim Y S, Back K. Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J, 2011, 66: 247–257

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!