作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1935-1943.doi: 10.3724/SP.J.1006.2013.01935
肖永贵1,刘建军2,夏先春1,陈新民1,Matthew REYNOLDS3,何中虎1,4,*
XIAO Yong-Gui1,LIU Jian-Jun2,XIA Xian-Chun1,CHEN Xin-Min1,Matthew REYNOLDS3,HE Zhong-Hu1,4,*
摘要:
植被覆盖率是反映植株生长势的重要生理性状,在旱作地区尤为重要。图像处理技术能够快速有效地对苗期和孕穗期植被覆盖率进行量化分析。以28份山东小麦主栽品种和品系为材料,在240株 m-2和360株 m-2密度下,连续2年测定了孕穗前不同发育阶段的植被覆盖率,并利用921个DArT标记和83个SSR标记分析了与植被覆盖率相关的遗传区段。结果表明。不同密度下,冬小麦植被覆盖率在越冬期、返青期和孕穗期存在显著差异,而起身期基本一致。起身期植被覆盖率与春季最高分蘖数、抽穗后群体叶面积指数、单位面积穗数和籽粒产量均呈显著正相关,r = 0.73~0.76 (P<0.01),表明起身期植被覆盖率可用于预测上述性状。共检测出12个遗传区段与植被覆盖率相关联,大部分区段直接参与调控苗期和孕穗期的生长势。10个遗传区段与已报道的苗期性状、产量性状及抗病位点一致,其中5BL、6AS和6BL染色体上携带的植被覆盖率相关遗传区段与已报道的苗期比叶面积和生物量等位点完全相同。建议将植被覆盖率作为生长势量化指标,用于育种选择和遗传研究。
[1]Rebetzke G J, Condon A G, Richards R A, Farquhar G D. Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci, 2002, 42: 739–745[2]Botwright T L, Condon A G, Rebetzke G J, Richards R A. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res, 2002, 53: 1137–1145[3]Rebetzke G J, Botwright T L, Moore C S, Richards R A, Condon A G. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res, 2004, 88: 179–189[4]Ryan J. Crop nutrients for sustainable agricultural production in the drought stressed Mediterranean region. J Agric Sci Technol, 2008, 10: 295–306[5]López-Castañeda C, Richards C, Richards R A, Farquhar G D. Variation in early vigor between wheat and barley. Crop Sci, 1995, 35: 472–479[6]López-Castaóeda C, Richards R A. Variation in temperate cereals in rainfed environments: III. Water use and water-use efficiency. Field Crops Res, 1994, 39: 85–98[7]Rebetzke G J, Richards R A. Genetic improvement of early vigour in wheat. Aust J Agric Res, 1999, 50: 291–301[8]Zhang G Y, Guo Y, Chen S L, Chen S Y. RFLP tagging of a salt tolerance gene in rice. Plant Sci, 1995, 110: 227–234[9]Prasad S R, Bagali P G, Hittalmani S, Shashidhar H E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci, 2000, 78: 162–164[10]Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253–260[11]Ellis R P, Forster B P, Gordon D C, Handley L L, Keith R P, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour C M, Young G, Thomas W T. Phenotype genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot, 2002, 53: 1163–1176[12]Mano Y, Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 1997, 94: 263–272[13]Xue D, Huang Y Z, Zhang X Q, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica, 2009, 169: 187–196[14]Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet, 2010, 121: 877–894[15]Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is association with longer coleoptiles, grater seedling vigour and final plan height. Theor Appl Genet, 2007, 115: 59–66[16]Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631–639[17]Richards R A, Lukacs Z. Seedling vigour in wheat-sources of variation for genetic and agronomic improvement. Aust J Agric Res, 2002, 53: 41–50[18]Prasad B, Carver B F, Stone M L, Babar M A, Raun W R, Klatt A R. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci, 2007, 47: 1416–1425[19]Mullan D J, Reynolds M P. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Funct Plant Biol, 2010, 37: 703–712[20]Wang G-Q(王桂琴), Zheng L-M(郑丽敏), Zhu H(朱虹), Liang Z-X(梁振兴), Liao S-H(廖树华). Application of image processing technology in wheat canopy leaf area index measuring. J Triticeae Crops (麦类作物学报), 2004, 24(4): 108–112 (in Chinese with English abstract) [21]Preussa C P, Huanga C Y, Louhaichib M, Ogbonnayab F C. Genetic variation in the early vigour of spring bread wheat under phosphate stress as characterised through digital charting. Field Crops Res, 2012, 127: 71–78[22]Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007, 177: 1889–1913[23]Wang G, Leonard J M, Ross A S, Peterson C J, Zemetra R S, Campbell K G, Riera-Lizarazu O. Identification of genetic factors controlling kernel hardness and related traits in a recombinant inbred population derived from a soft 3 ‘extra-soft’ wheat (Triticum aestivum L.) cross. Theor Appl Genet, 2012, 124: 207–221[24]Yang J, Sears R G, Gill B S, Paulsen G M. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 2002, 126: 275–282[25]Ren Y-Z(任永哲), Xu Y-H(徐艳花), Gui X-W(贵祥卫), Wang S-P(王素平), Ding J-P(丁锦平), Zhang Q-C(张庆琛), Ma Y-S(马原松), Pei D-L(裴冬丽). QTLs analysis of wheat seedling traits under salt stress. Sci Agric Sin (中国农业科学), 2012, 45(14): 2793–2800 (in Chinese with English abstract)[26]Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011, 54: 517–527[27]Maccaferri M, Sanguineti M C, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot, 2011, 62: 409–438[28]Wang Y, Sun X, Zhao Y, Kong F, Guo Y, Zhang G, Pu Y, Wu K, Li S. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci, 2011, 181: 65–75[29]Mir R R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H S, Gupta P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed, 2012, 29: 963–972[30]Kobayashi F, Takumi S, Handa H. Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. Theor Appl Genet, 2010, 121: 629–641[31]Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco D B M, Giancaspro A, Giove S, Panio G, Russo M A, De Vita P, Cattivelli L, Papa R. A high-density consensus map of A and B wheat genomes. Theor Appl Genet, 2012, 125: 1619–1638[32]Nik M M, Babaeian M, Tavassoli A. Effect of seed size and genotype on germination characteristic and seed nutrient content of wheat. Sci Res Essays, 2011, 6: 2019–2025[33]Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding. 2nd edn. Ames: Iowa State University Press, Ames. 1988, pp 380–420 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[4] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[5] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[6] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[7] | 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150. |
[8] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[9] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[10] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[11] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[12] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[13] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[14] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[15] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
|