欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1935-1943.doi: 10.3724/SP.J.1006.2013.01935

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于图像处理的冬小麦植被覆盖率测定及其遗传解析

肖永贵1,刘建军2,夏先春1,陈新民1,Matthew REYNOLDS3,何中虎1,4,*   

  1. 1中国农业科学院作物科学研究所/国家小麦改良中心,北京100081;2山东省农业科学院作物研究所,山东济南 250100;3 CIMMYT, Apartado Postal 6-641, 06600 México, DF, Mexico;4国际玉米小麦改良中心(CIMMYT)中国办事处,北京 100081
  • 收稿日期:2013-01-30 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31161140346和31201207)和旱区作物逆境生物学国家重点实验室(西北农林科技大学)开放课题资助。

Genetic Analysis of Vegetative Ground Cover Rate in Winter Wheat Using Digital Imaging

XIAO Yong-Gui1,LIU Jian-Jun2,XIA Xian-Chun1,CHEN Xin-Min1,Matthew REYNOLDS3,HE Zhong-Hu1,4,*   

  1. 1 Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; 2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 CIMMYT, Apartado Postal 6-641, 06600 México, DF, Mexico;
    4 CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2013-01-30 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-12
  • Contact: 何中虎, E-mail: zhhecaas@163.com

摘要:

植被覆盖率是反映植株生长势的重要生理性状,在旱作地区尤为重要。图像处理技术能够快速有效地对苗期和孕穗期植被覆盖率进行量化分析。以28份山东小麦主栽品种和品系为材料,在240 m-2360 m-2密度下,连续2年测定了孕穗前不同发育阶段的植被覆盖率,并利用921DArT标记和83SSR标记分析了与植被覆盖率相关的遗传区段。结果表明。不同密度下,冬小麦植被覆盖率在越冬期、返青期和孕穗期存在显著差异,而起身期基本一致。起身期植被覆盖率与春季最高分蘖数、抽穗后群体叶面积指数、单位面积穗数和籽粒产量均呈显著正相关,r = 0.73~0.76 (P<0.01),表明起身期植被覆盖率可用于预测上述性状。共检测出12个遗传区段与植被覆盖率相关联,大部分区段直接参与调控苗期和孕穗期的生长势。10个遗传区段与已报道的苗期性状、产量性状及抗病位点一致,其中5BL6AS6BL染色体上携带的植被覆盖率相关遗传区段与已报道的苗期比叶面积和生物量等位点完全相同。建议将植被覆盖率作为生长势量化指标,用于育种选择和遗传研究。

关键词: 普通小麦, 植被覆盖率, 关联分析, 遗传区段

Abstract:

Vegetative vigour is an important physiological trait and selection for greater seedling vigour is a goal of breeding programs, especially in rain-fed regions. This study aimed to identify the genetic variation of early vigour, determine the agronomic traits most closely associated with seedling growth, and detect the major gene-containing region of early vigour in winter wheat. Twenty-eight cultivars and advanced lines at two planting densities (240 plants m-2 and 360 plants m-2) were grown in Jinan during 2009–2010 and 2010–2011 cropping seasons, with randomized complete block design of three replications. Whole-genome association mapping was employed to identify the chromosome region controlling early vigour using 921 Diversity Array Technology (DArT) and 83 SSR markers. Early vigour was evaluated with vegetative ground cover rate via implementation of photographic image analysis, whereby computer analysis was used to determine percentage ground cover. Significant differences of ground cover rate between two planting densities were detected in pre-winter period, erecting and booting stages, but not in early stem elongation stage. Ground cover rate in erecting stage was significantly and positively associated with maximum tiller number (r = 0.76, P < 0.01), leaf area index (r = 0.74, P < 0.01), spike number (r = 0.73, P < 0.01), and grain yield (r = 0.73, P < 0.01). Twelve gene-containing regions for vegetative ground cover rate were detected in two seasons. Most of the regions conditioning the vegetative ground cover rate were not affected by the developmental stages. Ten gene-containing regions identified were consistent with previously reported QTLs for seedling traits, grain yield and disease resistance. Three regions on 5BL, 6AS, and 6BL were the same as previously reported loci for seedling traits. Therefore, there is sufficient genetic variation to increase early vigour in winter wheat, and early vigour could be quickly measured through digital image analysis.

Key words: Common wheat, Vegetative ground cover rate, Association study, Gene-containing region

[1]Rebetzke G J, Condon A G, Richards R A, Farquhar G D. Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci, 2002, 42: 739–745



[2]Botwright T L, Condon A G, Rebetzke G J, Richards R A. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res, 2002, 53: 1137–1145



[3]Rebetzke G J, Botwright T L, Moore C S, Richards R A, Condon A G. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res, 2004, 88: 179–189



[4]Ryan J. Crop nutrients for sustainable agricultural production in the drought stressed Mediterranean region. J Agric Sci Technol, 2008, 10: 295–306



[5]López-Castañeda C, Richards C, Richards R A, Farquhar G D. Variation in early vigor between wheat and barley. Crop Sci, 1995, 35: 472–479



[6]López-Castaóeda C, Richards R A. Variation in temperate cereals in rainfed environments: III. Water use and water-use efficiency. Field Crops Res, 1994, 39: 85–98



[7]Rebetzke G J, Richards R A. Genetic improvement of early vigour in wheat. Aust J Agric Res, 1999, 50: 291–301



[8]Zhang G Y, Guo Y, Chen S L, Chen S Y. RFLP tagging of a salt tolerance gene in rice. Plant Sci, 1995, 110: 227–234



[9]Prasad S R, Bagali P G, Hittalmani S, Shashidhar H E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci, 2000, 78: 162–164



[10]Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253–260



[11]Ellis R P, Forster B P, Gordon D C, Handley L L, Keith R P, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour C M, Young G, Thomas W T. Phenotype genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot, 2002, 53: 1163–1176



[12]Mano Y, Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 1997, 94: 263–272



[13]Xue D, Huang Y Z, Zhang X Q, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica, 2009, 169: 187–196



[14]Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet, 2010, 121: 877–894



[15]Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is association with longer coleoptiles, grater seedling vigour and final plan height. Theor Appl Genet, 2007, 115: 59–66



[16]Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631–639



[17]Richards R A, Lukacs Z. Seedling vigour in wheat-sources of variation for genetic and agronomic improvement. Aust J Agric Res, 2002, 53: 41–50



[18]Prasad B, Carver B F, Stone M L, Babar M A, Raun W R, Klatt A R. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci, 2007, 47: 1416–1425



[19]Mullan D J, Reynolds M P. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Funct Plant Biol, 2010, 37: 703–712



[20]Wang G-Q(王桂琴), Zheng L-M(郑丽敏), Zhu H(朱虹), Liang Z-X(梁振兴), Liao S-H(廖树华). Application of image processing technology in wheat canopy leaf area index measuring. J Triticeae Crops (麦类作物学报), 2004, 24(4): 108–112 (in Chinese with English abstract)



[21]Preussa C P, Huanga C Y, Louhaichib M, Ogbonnayab F C. Genetic variation in the early vigour of spring bread wheat under phosphate stress as characterised through digital charting. Field Crops Res, 2012, 127: 71–78



[22]Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007, 177: 1889–1913



[23]Wang G, Leonard J M, Ross A S, Peterson C J, Zemetra R S, Campbell K G, Riera-Lizarazu O. Identification of genetic factors controlling kernel hardness and related traits in a recombinant inbred population derived from a soft 3 ‘extra-soft’ wheat (Triticum aestivum L.) cross. Theor Appl Genet, 2012, 124: 207–221



[24]Yang J, Sears R G, Gill B S, Paulsen G M. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 2002, 126: 275–282



[25]Ren Y-Z(任永哲), Xu Y-H(徐艳花), Gui X-W(贵祥卫), Wang S-P(王素平), Ding J-P(丁锦平), Zhang Q-C(张庆琛), Ma Y-S(马原松), Pei D-L(裴冬丽). QTLs analysis of wheat seedling traits under salt stress. Sci Agric Sin (中国农业科学), 2012, 45(14): 2793–2800 (in Chinese with English abstract)



[26]Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011, 54: 517–527



[27]Maccaferri M, Sanguineti M C, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot, 2011, 62: 409–438



[28]Wang Y, Sun X, Zhao Y, Kong F, Guo Y, Zhang G, Pu Y, Wu K, Li S. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci, 2011, 181: 65–75



[29]Mir R R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H S, Gupta P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed, 2012, 29: 963–972



[30]Kobayashi F, Takumi S, Handa H. Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. Theor Appl Genet, 2010, 121: 629–641



[31]Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco D B M, Giancaspro A, Giove S, Panio G, Russo M A, De Vita P, Cattivelli L, Papa R. A high-density consensus map of A and B wheat genomes. Theor Appl Genet, 2012, 125: 1619–1638



[32]Nik M M, Babaeian M, Tavassoli A. Effect of seed size and genotype on germination characteristic and seed nutrient content of wheat. Sci Res Essays, 2011, 6: 2019–2025



[33]Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding. 2nd edn. Ames: Iowa State University Press, Ames. 1988, pp 380–420

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[5] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[6] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[7] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[8] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[9] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[10] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[13] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[14] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[15] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!