欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 666-670.doi: 10.3724/SP.J.1006.2015.00666

• 研究简报 • 上一篇    

铝离子胁迫下大豆根尖柠檬酸的分泌及SGA1基因的表达

杨列耿2,**,杨曙2,**,张永先2,唐健1,黎晓峰2,*   

  1. 1广西优良用材林资源培育重点实验室 / 广西林业科学研究院, 广西南宁530002; 2广西大学 / 亚热带生物资源保护与利用国家重点实验室,广西南宁 530005
  • 收稿日期:2014-11-02 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-03
  • 通讯作者: 黎晓峰, E-mail: lxf@gxu.edu.cn, Tel: 0771-3235314
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2014CB138701), 国家自然科学基金项目(30771287), 广西优良用材林资源培育重点实验室开发课题基金(12A0202)和教育部博士学科点专项科研资金(200805930008)资助。

Secretion of Citrate from Root Apices and Expression of SGA1 in Soybean under AlCl3 Stress

YANG Lie-Geng2,**,YANG Shu2,**,ZHANG Yong-Xian2,TANG Jian1,LI Xiao-Feng2,*   

  1. 1 Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation / Guangxi Forestry Research Institute, Nanning 530002, China; 2 Guangxi University / State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, Nanning 530004, China
  • Received:2014-11-02 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-03
  • Contact: 黎晓峰, E-mail: lxf@gxu.edu.cn, Tel: 0771-3235314

摘要:

为揭示铝离子诱导大豆根尖分泌有机酸的特点及介导有机酸分泌的信号途径,采用溶液培养试验方法调查AlCl3对大豆品种广州本地2号根尖有机酸分泌及SGA1基因表达的影响。结果表明,AlCl3胁迫下大豆活体根尖分泌柠檬酸,且分泌量随着铝浓度(25、50 µmol L–1AlCl3)和处理时间(2~12 h)的增加而增加;大豆根尖以模式II分泌柠檬酸,处理后的前4 h,分泌速率很低,其后显著提升;有机酸明显分泌的诱导期长达6 h;在50 µmol L–1 AlCl3的溶液中添加异三聚体G蛋白抑制剂百日咳毒素(200 ng mL–1),柠檬酸分泌减少38.7%。RT-PCR分析结果显示,AlCl3溶液诱导大豆根尖SGA1基因的表达,其表达水平随着铝处理时间(0.5~12.0 h)的延长有提升的趋势,而诱导的SGA1基因表达明显早于有机酸开始分泌时间(6 h)。这些结果表明,铝离子诱导大豆根尖分泌柠檬酸及SGA1基因的表达,异三聚体G蛋白可能作为铝胁迫信号开关器参与有机酸分泌的调控。

关键词: AlCl3, 大豆, 柠檬酸, 异三聚体G蛋白, SGA1基因

Abstract:

The effects of Al3+ on the secretion of organic acids from root apices and the expression of SGAI gene were investigated by hydroponics to elucidate the characteritics of organic acid secretion and Al3+ stress signal transduction pathway which mediates the secretion of organic acids in soybean Guangzhou 2. The results showed that soybean root apices (in vivo) secreted citrate under Al3+ stress. The secretion of citrate increased with the increase of Al3+ concentrations (25, 50 µmol L–1 AlCl3) and the prolongation (2–12 hours) of treatment with Al3+. Citrate was secreted from root apices by pattern II in soybean. The secretion rate was very low within initial four hours after Al3+ treatment but remarkably elevated thereafter. A gap of time between the secretion and Al3+ treatment reached to about six hours. On the other hand when cholera toxin, an inhibitor of heterotrimeric G-protein, was added to Al3+solution, the amount of citrate secreted decreased by 38.7%. RT-PCR analysis results indicated that Al3+ induced SGA1 expression. In general, the expression level was elevated with the prolongation of treatment with Al3+ (0.5 to 12 hours). Moreover, Al3+ induced expression of SGA1 sooner than the secretion of citrate. These results imply that Al3+ induces  the secretion of citrate from root apices and SGA1 expression in the soybean, and heterotrimeric G proteins may act as a switch of Al3+ stress signal to be involved in the regulation of citrate secretion from root apices under Al3+ stress.

Key words: AlCl3, Soybean, Citrate, Heterotrimeric G-protein, SGA1 gene

[1]Mac D T L, Humphreys W G, Martin R B. Promotion of tubulin assembly by aluminum ion in vitro. Science, 1987, 236: 183–186



[2]Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 237–260



[3]Taylor G J. Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top Plant Biochem Physiol, 1991, 10: 57–93



[4]Ma J F. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol, 2000, 41: 383–390



[5]Chen Y L, Huang R F, Xiao Y M, Lu P, Chen J, Wang X C. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol, 2004, 136: 4096–4103



[6]Assmann S M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell, 2002, 14: S355–S373



[7]Fujisawa Y, Kao H, Iwasaki Y. Structure and function of heterotfimeric G proteins in plants. Plant Cell Physiol, 2001, 42, 789–794



[8]Urano D, Jones A M. Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol, 2014, 65: 365–84



[9]Yang Z M, Sivaguru M, Horst W J, Matsumoto H. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant, 2000, 110: 72–77



[10]Li Y Y, Tang X L, Yang L G, Yu Y X, Li X F. Possible involvement of heterotrimeric G-protein signaling in Al-induced secretion of organic acid anions in Arabidopsis and rye. Plant Soil, 2014, DOI: 10.1007/s11104-014-2325-0



[11]Li X F, Zuo F H, Ling G Z, Li Y Y, Yu Y Y, Yang P Q, Tang X L. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes. Plant Soil, 2009, 325: 219–229



[12]Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots: an investigation of spatial sensitivity and to role of the root cap. J Exp Bot, 1993, 44: 43–446



[13]Zheng S J, Ma J F, Matusmoto H. High aluminum resistance in buckwheat. I: Al-induced specific secretion of oxalic acid from root tips. Plant Physiol, 1998, 117: 745–751



[14]Dong D F, Peng X X, Yan X L. Organic acid exudation induced by phosphorus deficiency and/or aluminum toxicity in two contrasting soybean genotypes. Physiol Plant, 2004, 122: 190–199



[15]Li X F, Ma J F, Matusmoto H. Pattern of Al induced secretion of organic acid differs between rye and wheat. Plant Physiol, 2000, 123: 1537–1543



[16]Ma H. GTP-binding proteins in plants: new members of an old family. Plant Mol Biol, 1994, 26: 1611–1636



[17]Liu J P, Magalhaes J V, Shaff J, Kochian L V. Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J, 2009, 57: 389–399



[18]Delhaize E, Ma J F, Ryan P R. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci, 2012, 17: 341–348

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!