欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1970-1975.doi: 10.3724/SP.J.1006.2013.01970

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的水稻内卷叶突变体的表型和遗传分析

解志伟1,2,孙伟3,尹亮3,赵金凤2,袁守江3,张文会1,*,李学勇2,*   

  1. 聊城大学生命科学学院, 山东聊城252059; 2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081; 3 山东省水稻研究所, 山东济南250100
  • 收稿日期:2013-03-05 修回日期:2013-06-01 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 13563589359
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08009-003)资助。

Phenotypic and Genetic Analyses of a Novel Adaxially-rolled Leaf Mutant in Rice

XIE Zhi-Wei1,2,SUN Wei3,YIN Liang3,ZHAO Jin-Feng2,YUAN Shou-Jiang3,ZHANG Wen-Hui1,*,LI Xue-Yong2,*   

  1. 1 School of Life Science, Liaocheng University, Liaocheng 252059, China; 2 National Key Facility for Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Shandong Rice Research Institute, Jinan 250100, China
  • Received:2013-03-05 Revised:2013-06-01 Published:2013-11-12 Published online:2013-08-12
  • Contact: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 13563589359

摘要:

叶片是光合作用的重要器官,适度卷曲有利于改善群体光照、提高光能利用率,卷叶基因是培育理想株型的重要资源。为研究控制水稻叶片形态建成的分子机理,从EMS诱变粳稻品种日本晴的M2代中分离了一个叶片向内卷曲的突变体s1-145,该突变体叶绿素含量增高,株高和育性等产量性状正常。遗传分析表明该性状受一对隐性基因控制。利用InDel标记将该基因定位于第2染色体R2-34.70R2-34.79之间物理距离为90 kb的范围内。本研究结果为该卷叶基因的克隆和功能分析奠定了基础,对水稻株型改良提供了基因资源和育种材料。

关键词: 水稻, 卷叶突变体, 基因定位

Abstract:

Leaf is an important organ for photosynthesis. Moderate rolling of leaves can facilitate the improvement of plant’s population structure and enhance light-use efficiency, which is very important in ideotype breeding of rice. In the present study, in order to systematically dissect the molecular mechanism of leaf morphogenesis and development, one ethyl methylsulfone (EMS) -induced rice (Oryza sativa L.) mutant with adaxially-rolled leaf, namely s1-145, was characterized. This mutant exhibited higher chlorophyll content, normal plant height and fertility. Genetic analysis indicated that the mutant was controlled by a single recessive gene. The mutated gene of s1-145 was fine mapped within a 90 kb interval between two indel markers R2-34.70 and R2-34.79 on the long arm of chromosome 2 in rice. These results provide a basis for the final cloning and functional analysis of the leaf-rolling gene, as well as gene resource and plant material for rice ideotype breeding.

Key words: Rice, Rolled leaf mutant, Gene mapping

[1]Shen F-C(沈福成). Several opinions on how to use rolled leaf character of rice in breeding. Guizhou Agric Sci (贵州农业科学), 1983, (5): 6–8 (in Chinese with English abstract)



[2]Chen Z-X(陈宗祥), Pan X-B(潘学彪), Hu J(胡俊). Relationship between rolled leaf and ideal plant type of rice (Oryza sativa L.). Jiangsu Agric Res (江苏农业研究), 2001, 22(4): 88–91 (in Chinese with English abstract)



[3]Lang Y-Z(郎有忠), Zhang Z-J(张祖建), Gu X-Y(顾兴友), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): I: leaf orientation, canopy structure and light distribution. Acta Agron Sin (作物学报), 2004, 30(8): 806–810 (in Chinese with English abstract)



[4]Luo Y-Z(罗远章), Zhao F-M(赵芳明), Sang X-C(桑贤春), Ling Y-H(凌英华), Yang Z-L(杨正林), He G-H(何光华). Genetic analysis and gene mapping of a novel rolled leaf mutant rl12(t) in rice. Acta Agron Sin (作物学报), 2009, 35(11): 1967–1972 (in Chinese with English abstract)



[5]Yu D(余东), Wu H-B(吴海滨), Yang W-T(杨文韬), Gong P-T(巩鹏涛), Li Y-Z(李有志), Zhao D-G(赵德刚). Genetic analysis and mapping of the unilateral rolled leaf trait of rice mutant B157. Mol Plant Breed (分子植物育种), 2008, 6(2): 220–226 (in Chinese with Eng1ish abstract)



[6]Shao Y-J(邵元健), Pan C-H(潘存红), Chen Z-X(陈宗祥), Zuo S-M(左示敏), Zhang Y-F(张亚芳), Pan X-B(潘学彪). Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.). Chin Sci Bull (科学通报), 2005, 50(21): 2466–2472 (in Chinese with English abstract)



[7]Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxia cell development. Plant Cell, 2009, 21: 719–735



[8]Yan S, Yan C J, Zeng X H, Yang Y C, Fang Y W, Tian C Y, Sun Y W, Cheng Z K, Gu M H. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol, 2008, 68: 239–250



[9]Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283–292



[10]Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589–1602



[11]Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345–354



[12]Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807–817



[13]Waites R, Hudson A. Phantastica: A gene required for dorsoventrality of leaves in Antirrnum majus. Development, 1995, 121: 2143–2154



[14]Emery J F, Floyd S K, Alvarez J, Eshed Y, Hawker N P, Izhaki A, Baum S F, Bowman J L. Radial patterning of Arabidopsis shoots by class HD-ZIPIII and KANADI genes. Curr Biol, 2003, 13: 1768–1774



[15]Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126: 4117–4128



[16]Kerstetter R A, Bollman K, Taylor A R, Bomblies K, Poethig R S. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411: 706–709



[17]Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAG07 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99–108



[18]Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-eaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524–532



[19]Xiang J J, Zhang G H, Qian Q, Xue H X. SEMI-ROLLED LEAF1 encodes a putative Glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488–1500



[20]Gao Y-H(高艳红), Lü C-G(吕川根), Wang M-Q(王茂青), Wang P(王澎), Yan X-Y(闫晓燕), Xie K(谢坤), Wan J-M(万建民). QTL mapping for rolled leaf gene in rice. Jiangsu Agric Sci (江苏农业学报), 2007, 23(1): 5–10 (in Chinese with English abstract)



[21]Zou Q(邹琦). Experimental Guide for Plant Physiology (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 72–75 (in Chinese)



[22]Guo W-W(郭伟伟)), Li G-X(李广贤), Wang G-Q(王光全), Yuan S-J(袁守江), Zhang W-H(张文会), Zhao J-F(赵金凤), Li X-Y(李学勇). Preliminary studies on erect-drooping panicle in rice. J Nucl Agric Sci (核农学报), 2012, 26(1): 11–16 (in Chinese with English abstract)



[23]Micol L J, Hake S. The development of plant leaves. Plant Physiol, 2003, 131: 389–394



[24]Byrne M, Timmermans M, Kidner C, Martienssen R. Development of leaf shape. Curr Opin Plant Biol, 2001, 4: 38–43



[25]Chen Z-X(陈宗祥), Chen G(陈刚), Hu J(胡俊), Dai L-C(戴留春), Tao G-Y(陶国英), Pan X-B(潘学彪). Genetic expression and effects of rolled leaf gene Rl(t) in hybrid rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 847–851 (in Chinese with English abstract)



[26]Luo Z K, Yang Z, Zhong B Q, Li Y F, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene in rice (Oryza sativa L.). Genome, 2007, 50: 811–817

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!