作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1856-1863.doi: 10.3724/SP.J.1006.2013.01856
任江萍,王亚英,王新国,王娜,陈新,孟晓丹,李永春,尹钧*
REN Jiang-Ping,WANG Ya-Ying,WANG Xin-Guo,WANG Na,CHEN Xin,MENG Xiao-Dan,LI Yong-Chun,YIN Jun*
摘要:
以转反义硫氧还蛋白基因小麦TY18-99和TY18-100及其相应未转基因对照为材料,于2007—2009年通过盆栽试验系统研究了反义Trxs基因(anti-Trxs)导入对弱筋小麦豫麦18籽粒灌浆过程中淀粉积累、淀粉合成关键酶活性以及淀粉合成酶基因表达的影响。结果表明,反义Trxs基因对小麦籽粒淀粉积累有一定的正效应。2个转基因株系的总淀粉和支链淀粉的积累速率较对照显著提高;在整个籽粒形成过程中,反义Trxs基因导入显著提高了淀粉分支酶(SBE)活性。在籽粒灌浆中期和后期,反义Trxs基因导入显著提高了腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)和可溶性淀粉合酶(SSS)活性,降低了颗粒束缚型淀粉合酶(GBSS)活性。实时荧光定量RT-PCR分析表明,反义Trxs基因促进了AGPase、SBE I和SSS (SSS I、SSS II和SSS III)基因的表达,抑制了GBSS I基因的表达。上述结果说明,反义Trxs基因导入后促进了AGPase、SBE I和SSS基因的转录,从而使籽粒灌浆期间的淀粉积累速率发生了改变,最终显著提高了总淀粉和支链淀粉的含量,降低了直链淀粉含量,进而提高了淀粉的支/直比,这可能是转基因小麦淀粉品质改善和产量提高的主要原因。
[1]Joudrier P, Gautier M, Lamotte F D, Kobrehel K. The thioredoxin h system: potential applications. Biotechnol Adv, 2005, 23: 81–85[2]Kobrehel K, Boihon C, Yee, Buchanan B B. Role of the NADP/thioredoxin system in reduction of α-amylase and trypsin inhibitor proteins. J Biol Chem, 1991, 266: 16135–16140[3]Kobrehel K, Wong J H, Balogh A, Kiss F, Yee B C, Buchanan B B. Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol, 1992, 99: 919–924[4]Ballicora M A, Frueauf J B, Fu Y, Schurmann P, Preiss J. Activation of the potato tuber ADP-glucose pyrophosphatase by thioredoxins. J Biol Chem, 1999, 275: 1315–1320[5]Wong J H, Cai N, Balmer Y, Tanaka C K, Vensel W H, Hurkman W J, Buchanan B B. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry, 2004, 65: 1629–1640[6]Li X M, Nield J, Hayman D, Langredge P. Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell, 1994, 6: 1923–1932[7]Li X M, Nield J, Hayman D, Langridge P. A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant J, 1996,10: 505–513[8]Yin J(尹钧), Ren J-P(任江萍), Song L(宋丽), Li L(李磊), Shi X-Z(师学珍), Guo X-Y(郭向云). Regeneration culture from bombarded immature embryos of wheat and transgenic plant. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(9): 1565–1570 (in Chinese with English abstract)[9]Liu L(刘雷), Yin J(尹钧), Ren J-P(任江萍), Han J-F(韩锦峰). Effects of antisense trxs on germination of transgenic wheat seeds. Acta Agron Sin (作物学报), 2004, 30(8): 801–805 (in Chinese with English abstract)[10]Li Y C, Ren J P, Cho M J, Zhou S M, Kim Y B, Guo H X, Wong J H, Niu H B, Kim H K, Morigasaki S, Lemaux P G, Frick O L, Yin J, Buchanan B B. The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol Plant, 2009, 2: 430–441[11]Ren J-P(任江萍), Wang N(王娜), Wang X-G(王新国), Li Y-C(李永春), Niu H-B(牛洪斌), Wang X(王翔), Yin J(尹钧). Effects of anti-sense thioredoxin s on grain yield and quality properties in two wheat cultivars with different quality types. Acta Agron Sin (作物学报), 2010, 36(11): 1877−1882 (in Chinese with English abstract)[12]He Z-F(何照范). Analysis Techniques for Grain Quality in Cereals and Oils (粮油籽粒品质及其分析技术). Beijing: China Agriculture Press, 1985. pp 131–133 (in Chinese)[13]Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early-indica. Sci Agric Sin (中国农业科学), 2003, 36(5): 492–501 (in Chinese with English abstract)[14]Douglus C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 86: 1013–1019[15]Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grain. Plant Cell Physiol, 1989, 30: 833–839[16]Zhao F-M(赵法茂), Qi X(齐霞), Xiao J(肖军), Wang X-Z(王宪泽). Improvemed method for determining starch branching enzyme activity. Plant Physiol Commun (植物生理学通讯), 2007, 43(6): 1167–1169 (in Chinese)[17]Ni Z F, Sun Q X, Wu L M, Xie C J. Differential gene expression between wheat hybrids and their parental inbreds in primary roots. Acta Bot Sin, 2002, 44: 457–462[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402–408[19]Serrato A J, Cejudo F J. Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta, 2003, 217: 392–399[20]Stark D M, Tinunerman K P, Barry G F, Preiss J, Kishpre G M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylaze. Science, 1992, 258: 287–292[21]Crcsbie G B. Wheat Quality Trendsin Western Australia.In:Proc 39th Cereal Chemistry Conference, Perth, 1989. pp 59–65[22]Kouich M, Koji K, Yuji A, Kawasaki T, Shimada H, Baba T. Starch branching enzymes from immature rice seeds.J Biochem, 1992, 112: 643–651[23]Wang Y-F(王月福),Yu Z-W(于振文),Li S-X(李尚霞),Yu S-L(余松烈).Activity of enzymes related to starch synthesis and their effect during the filling of winter wheat.Acta Agron Sin (作物学报), 2003, 29(1): 75–81 (in Chinese with English abstract)[24]Reeves C D, Krishan H B, Okita T W. Gene expression in development wheat endosperm. Plant Phsiol, 1986, 82: 34–40[25]Li J R, Zhao W, Li Q Z, Ye X G, An B Y, Li X, Zhang X S. RNA silencing of waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genet Sin, 2005, 32: 846–854[26]Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459–472[27]James M G, Robertson D S, Myers A M. Characterization of the maize gene sugary1, a determinant of starch composition in kernals. Plant Cell, 1995, 7: 417–429[28]Meng L, Wong J H, Feldman L J, Lemaux P G, Buchanan B B. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci USA, 2010, 107: 3900–3905 [29]Guo H X, Zhang H Z, Li Y C, Ren J P, Wang X, Niu H B, Yin J. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene. PLoS ONE, 2011, 6: e22255 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|