欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1856-1863.doi: 10.3724/SP.J.1006.2013.01856

• 耕作栽培·生理生化 • 上一篇    下一篇

反义Trxs基因导入对弱筋小麦豫麦18淀粉积累及淀粉合成关键酶表达的影响

任江萍,王亚英,王新国,王娜,陈新,孟晓丹,李永春,尹钧*   

  1. 河南农业大学 / 国家小麦工程技术研究中心, 河南郑州 450002
  • 收稿日期:2013-01-04 修回日期:2013-05-25 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 尹钧, E-mail: xmzxyj@126.com, Tel: 0371-63558203
  • 基金资助:

    本研究由国家自然科学基金项目(30771332和30971771)资助。

Effects of Antisense Thioredoxin s on Starch Accumulation and Expressions of Enzymes Related to Starch Synthesis in Weak-gluten Wheat Cultivar Yumai 18

REN Jiang-Ping,WANG Ya-Ying,WANG Xin-Guo,WANG Na,CHEN Xin,MENG Xiao-Dan,LI Yong-Chun,YIN Jun*   

  1. Henan Agricultural University / National Engineering Research Centre for Wheat, Zhengzhou 450002, China
  • Received:2013-01-04 Revised:2013-05-25 Published:2013-10-12 Published online:2013-08-01
  • Contact: 尹钧, E-mail: xmzxyj@126.com, Tel: 0371-63558203

摘要:

转反义硫氧还蛋白基因小麦TY18-99TY18-100及其相应未转基因对照为材料,于2007—2009年通过盆栽试验系统研究了反义Trxs基因(anti-Trxs)导入对弱筋小麦豫麦18籽粒灌浆过程中淀粉积累、淀粉合成关键酶活性以及淀粉合成酶基因表达的影响。结果表明,反义Trxs基因对小麦籽粒淀粉积累有一定的正效应。2个转基因株系的总淀粉和支链淀粉的积累速率较对照显著提高;在整个籽粒形成过程中,反义Trxs基因导入显著提高了淀粉分支酶(SBE)活性。在籽粒灌浆中期和后期,反义Trxs基因导入显著提高了腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)和可溶性淀粉合酶(SSS)活性,降低了颗粒束缚型淀粉合酶(GBSS)活性。实时荧光定量RT-PCR分析表明,反义Trxs基因促进了AGPaseSBE ISSS (SSS ISSS IISSS III)基因的表达,抑制了GBSS I基因的表达。上述结果说明,反义Trxs基因导入后促进了AGPaseSBE ISSS基因的转录,从而使籽粒灌浆期间的淀粉积累速率发生了改变,最终显著提高了总淀粉和支链淀粉的含量,降低了直链淀粉含量,进而提高了淀粉的支/直比,这可能是转基因小麦淀粉品质改善和产量提高的主要原因

关键词: 小麦, 反义Trxs基因, 淀粉合成酶

Abstract:

To clarify the functional mechanisms of starch accumulation by the antisense-thioredoxin s (anti-Trxs) gene into wheat, we conducted a pot experiment using two transgenic wheat lines, TY18-99 and TY18-100, and their wild type “Yumai 18” from October 2007 to June 2009. The effects of the anti-Trxs on starch accumulation and key enzymes involved in starch synthesis were compared between the transgenic lines and the wild type. Results indicated that the rates of starch and amylopectin accumulations in grain were significantly higher in the transgenic lines than in the wild type. During the whole grain-filling period, activity of starch-branching enzyme (SBE) in the transgenic lines increased significantly by 49.2% compared with that in the wild type. At late grain-filling stage, activities of ADP-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) in the transgenic lines increased by 45.8% and 16.0%, respectively. However, activity of granule-bound starch synthase (GBSS) in the transgenic lines had no significant variation. The real time RT-PCR assay indicated that the introduction of anti-Trxs resulted in increased expressions of SSS (SSS I, SSS II, and SSS III), SBE I, and AGPase genes and reduction of GBSS I transcription. Therefore, the enhanced expressions of AGPase, SBE I, and SSS may be the main reason for the increase in starch synthesis in anti-Trxs transgenic lines.

Key words: Wheat, Anti-sense thioredoxin s gene, Starch synthesis enzymes

[1]Joudrier P, Gautier M, Lamotte F D, Kobrehel K. The thioredoxin h system: potential applications. Biotechnol Adv, 2005, 23: 81–85



[2]Kobrehel K, Boihon C, Yee, Buchanan B B. Role of the NADP/thioredoxin system in reduction of α-amylase and trypsin inhibitor proteins. J Biol Chem, 1991, 266: 16135–16140



[3]Kobrehel K, Wong J H, Balogh A, Kiss F, Yee B C, Buchanan B B. Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol, 1992, 99: 919–924



[4]Ballicora M A, Frueauf J B, Fu Y, Schurmann P, Preiss J. Activation of the potato tuber ADP-glucose pyrophosphatase by thioredoxins. J Biol Chem, 1999, 275: 1315–1320



[5]Wong J H, Cai N, Balmer Y, Tanaka C K, Vensel W H, Hurkman W J, Buchanan B B. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry, 2004, 65: 1629–1640



[6]Li X M, Nield J, Hayman D, Langredge P. Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell, 1994, 6: 1923–1932



[7]Li X M, Nield J, Hayman D, Langridge P. A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant J, 1996,10: 505–513



[8]Yin J(尹钧), Ren J-P(任江萍), Song L(宋丽), Li L(李磊), Shi X-Z(师学珍), Guo X-Y(郭向云). Regeneration culture from bombarded immature embryos of wheat and transgenic plant. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(9): 1565–1570 (in Chinese with English abstract)



[9]Liu L(刘雷), Yin J(尹钧), Ren J-P(任江萍), Han J-F(韩锦峰). Effects of antisense trxs on germination of transgenic wheat seeds. Acta Agron Sin (作物学报), 2004, 30(8): 801–805 (in Chinese with English abstract)



[10]Li Y C, Ren J P, Cho M J, Zhou S M, Kim Y B, Guo H X, Wong J H, Niu H B, Kim H K, Morigasaki S, Lemaux P G, Frick O L, Yin J, Buchanan B B. The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol Plant, 2009, 2: 430–441



[11]Ren J-P(任江萍), Wang N(王娜), Wang X-G(王新国), Li Y-C(李永春), Niu H-B(牛洪斌), Wang X(王翔), Yin J(尹钧). Effects of anti-sense thioredoxin s on grain yield and quality properties in two wheat cultivars with different quality types. Acta Agron Sin (作物学报), 2010, 36(11): 1877−1882 (in Chinese with English abstract)



[12]He Z-F(何照范). Analysis Techniques for Grain Quality in Cereals and Oils (粮油籽粒品质及其分析技术). Beijing: China Agriculture Press, 1985. pp 131–133 (in Chinese)



[13]Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early-indica. Sci Agric Sin (中国农业科学), 2003, 36(5): 492–501 (in Chinese with English abstract)



[14]Douglus C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 86: 1013–1019



[15]Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grain. Plant Cell Physiol, 1989, 30: 833–839



[16]Zhao F-M(赵法茂), Qi X(齐霞), Xiao J(肖军), Wang X-Z(王宪泽). Improvemed method for determining starch branching enzyme activity. Plant Physiol Commun (植物生理学通讯), 2007, 43(6): 1167–1169 (in Chinese)



[17]Ni Z F, Sun Q X, Wu L M, Xie C J. Differential gene expression between wheat hybrids and their parental inbreds in primary roots. Acta Bot Sin, 2002, 44: 457–462



[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402–408



[19]Serrato A J, Cejudo F J. Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta, 2003, 217: 392–399



[20]Stark D M, Tinunerman K P, Barry G F, Preiss J, Kishpre G M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylaze. Science, 1992, 258: 287–292



[21]Crcsbie G B. Wheat Quality Trendsin Western Australia.In:Proc 39th Cereal Chemistry Conference, Perth, 1989. pp 59–65



[22]Kouich M, Koji K, Yuji A, Kawasaki T, Shimada H, Baba T. Starch branching enzymes from immature rice seeds.J Biochem, 1992, 112: 643–651



[23]Wang Y-F(王月福),Yu Z-W(于振文),Li S-X(李尚霞),Yu S-L(余松烈).Activity of enzymes related to starch synthesis and their effect during the filling of winter wheat.Acta Agron Sin (作物学报), 2003, 29(1): 75–81 (in Chinese with English abstract)



[24]Reeves C D, Krishan H B, Okita T W. Gene expression in development wheat endosperm. Plant Phsiol, 1986, 82: 34–40



[25]Li J R, Zhao W, Li Q Z, Ye X G, An B Y, Li X, Zhang X S. RNA silencing of waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genet Sin, 2005, 32: 846–854



[26]Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459–472



[27]James M G, Robertson D S, Myers A M. Characterization of the maize gene sugary1, a determinant of starch composition in kernals. Plant Cell, 1995, 7: 417–429



[28]Meng L, Wong J H, Feldman L J, Lemaux P G, Buchanan B B. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci USA, 2010, 107: 3900–3905



[29]Guo H X, Zhang H Z, Li Y C, Ren J P, Wang X, Niu H B, Yin J. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene. PLoS ONE, 2011, 6: e22255

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!