欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (01): 80-85.doi: 10.3724/SP.J.1006.2014.00080

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树花转录组微卫星分布特征

王丽鸳,韦康,张成才,成浩*   

  1. 中国农业科学院茶叶研究所 / 国家茶树改良中心,浙江杭州 310008
  • 收稿日期:2013-05-21 修回日期:2013-07-25 出版日期:2014-01-12 网络出版日期:2013-09-29
  • 通讯作者: 成浩, E-mail: chenghao@mail.tricaas.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(nycytx-23), 浙江省自然科学基金(LY13C160004)和浙江省茶产业技术创新战略联盟项目资助。

Characterization of Micorsatellites in Tea (Camellia sinensis) Floral Transcriptome

WANG Li-Yuan,WEI Kang,ZHANG Cheng-Cai,CHENG Hao*   

  1. Tea Research Institute, Chinese Academy of Agricultural Sciences / National Center for Tea Improvement, Hangzhou 310008, China
  • Received:2013-05-21 Revised:2013-07-25 Published:2014-01-12 Published online:2013-09-29
  • Contact: 成浩, E-mail: chenghao@mail.tricaas.com

摘要:

利用Perl语言,对茶树花转录组序列进行大通量SSR位点的发掘,发现含SSRs的序列10 290, 12 582SSRs,平均2.41 kb出现一个SSR。在茶树花的转录组中共发现340种碱基重复模式,所占比例最高的是(AG/CT)n (44.99%)。在49 586条注释成功的茶树花Unigene中,共发现10 490SSR位点,其中位于编码区的1917个,其出现频率仅为0.102 SSR/1000 bp,而非编码区为3.072 SSR/1000 bp。在基因编码区中出现频率最高的是三碱基微卫星(1140 59.5%),其次是六碱基微卫星(524, 27.3%)。茶树花转录组所含微卫星以重复长度小于20 bp的序列最多,大于20 bp的仅为25.22%。茶树花转录组中,含微卫星基因的平均表达水平显著低于不含微卫星基因,其中含复杂微卫星基因的平均基因表达水平最低。

关键词: 茶树, 微卫星, 花, 转录组

Abstract:

The microsatellites or simple sequence repeats (SSRs) in Camellia sinensis floral transcriptome were characterized. A total of 12 582 SSRs were identified in 10 290 unigenes, with one SSR per 2.41 kb. Among all 340 SSR motifs,(AG/CT)n was the most frequent repeat motif (44.99%). A total of 10 409 SSRs occurred in 49586 unigenes with Blast matches to annotated proteins in four databases, only 1 917 of which occurred in protein-coding regions of these sequences. The density of SSRs was much higher in non-coding regions than in coding regions (0.102 SSRs per 1000 base pairs in coding regions vs. 3.072 in non-coding regions). In the six repeat motifs, tri-nucleotide repeats were the most abundant in coding regions (1140), followed by hexa-nucleotide (524) repeats. The microsatellites with length below 20 bp were in maximum proportion, while the microsatellites over 20 bp were only 25.22%. The expression level of genes containing microsatellites was significantly lower than that not containing microsatellites. The overall expression levels of genes containing compound microsatellites were lowest.

[1]He P(何平). Abundance, polymorphism and applications of microsatellite in eukaryote. Hereditas (遗传), 1998, 20(4): 42–47 (in Chinese)



[2]Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, (1): 215–222



[3]Li S X, Yin T M. Map and analysis of microsatellites in the genome of Populus: the first sequenced perennial plant. Sci in China Series C: Life Sci, 2007, 50(5): 690–699



[4]Jin J-Q(金基强) Cui H-R(崔海瑞), Chen W-Y(陈文岳), Lu M-Z(卢美贞), Yao L-Y(姚艳玲), Xin Y(忻雅), Gong X-C(龚晓春). Data mining for SSRs in ESTs and development of EST-SSR marker in tea plant (Camellia sinensis). J Tea Sci (茶叶科学), 2006, 26(1): 17–23 (in Chinese with English abstract)



[5]Wang L-Y(王丽鸳), Jiang Y-H(姜燕华), Duan Y-S(段云裳), Cheng H(成浩), Zhou J(周健), Zeng J-M(曾建明). Characterization of EST-derived microsatellites and development of SSR-markers in tea (Camellia sinensis). Plant Genet Resourc (植物遗传资源学报), 2009, 10(4): 511–516 (in Chinese with English abstract)



[6]Sharma R K, Bhardwaj P, Negi R, Trilochan M, Ahuja P S. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol, 2009, 9: 53



[7]Yang H (杨华), Chen Q(陈琪), Wei C-L(韦朝领), Shi C-Y(史成颖), Fang C-B(方从兵), Wan X-C(宛晓春). Analysis on SSR information in Camellia sinensis transcriptome. J Anhui Agric Univ (安徽农业大学学报), 2011, 38(6): 882–886 (in Chinese with English abstract)



[8]Iseli C, Jongeneel C V, Bucher P. EST Scan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. International Conference on Intelligent Systems for Molecular Biology, 1999, pp 138–148



[9]Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621–628



[10]Weber J L. Informativeness of human (dC-dA)n•(dG-dT)n polymorphisms. Genomics, 1990, 7: 524–530



[11]Rota L R, Kantety R V, Yu J K. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice , wheat , and barley. BMC Genom, 2005, 6: 23



[12]Katti M V, Ranjekar P K, Gupta V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol, 2001, 18: 1161–1167



[13]Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genonmes. Nat Genet, 2002, 30: 194–200



[14]Zhang X-H(张晓红). Development of SNPs in EST of Eucalyptus and Construction of EST Linkage Maps for Eucalyptus. MS Thesis of Nanjing Forestry University, 2009. pp 31–47 (in Chinese with English abstract)



[15]Li S-X(李淑娴), Zhang X-Y(张新叶), Wang Y-Y(王英亚), Yin T-M(尹佟明). Content and characteristics of microsatellites detected in expressed sequence tag sequences in eucalyptus. Chin Bull Bot (植物学报), 2010, 45(3): 363–371 (in Chinese with English abstract)



[16]Li X, Shangguan L, Song C, Wang C, Gao Z, Yu H, Fang J. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC Genet, 2010, 11: 66



[17]Pan H-T(潘海涛), Wang J-J(汪俊君), Wang Y-Y(王盈盈), Qi Z-L(齐照良), Li S-S(李斯深). Development and mapping of EST-SSR markers in wheat. Sci Agric Sin (中国农业科学), 2010, 43(3): 452–461 (in Chinese with English abstract)



[18]Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucl Acids Res, 1992, 20, 211–215



[19]Sharopova N. Plant simple sequence repeats: distribution, variation, and effects on gene expression. Genome, 2008, 51: 79–90



[20]Streelman J, Kocher Microsatellite variation associated with prolactin expression and growth of salt challenged Tilapia. Physiol Genom, 2002, 9: 1–4



[21]Liu J-J(刘菁菁), Dai X-G(戴晓港), Wang J(王洁), Li S-X(李淑娴), Yin T-M(尹佟明). Effect of microsatellites on gene expression level and characteristics of expressed SSRs in poplars. J Nanjing For Univ (Nat Sci Edn) (南京林业大学学报?自然科学版), 2011, 35(1): 11–14 (in Chinese with English abstract)
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[7] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[8] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824.
[9] 秦琴, 陶有凤, 黄帮超, 李卉, 高云天, 钟晓媛, 周中林, 朱莉, 雷小龙, 冯生强, 王旭, 任万军. 杂交水稻机插制种的亲本穗茎生长与花期特性[J]. 作物学报, 2022, 48(4): 988-1004.
[10] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[11] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[12] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[13] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[14] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[15] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!