作物学报 ›› 2014, Vol. 40 ›› Issue (03): 381-389.doi: 10.3724/SP.J.1006.2014.00381
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
单雷1,2,唐桂英1,徐平丽1,赵学彬1,3,柳展基1
SHAN Lei1,2,*,TANG Gui-Ying1,XU Ping-Li1,ZHAO Xue-Bin1,3,LIU Zhan-Ji1
摘要:
采用染色体步移技术分别克隆3个花生质体型酰基载体蛋白(ACP)基因的5¢侧翼调控区序列, AhACP1、AhACP4和AhACP5基因5¢上游序列分别为535、1400和1180 bp; 利用5¢RACE方法确定了这3个基因的转录起始位点, 分别位于起始密码ATG上游–71 bp、–92 bp和–71 bp处。利用生物信息学软件分析了花生ACPs启动子区包含的主要调控元件, 发现尽管花生AhACP4和AhACP5基因在根、茎、叶、花和不同发育期种子中的基本表达模式相似, 但它们的启动子中包含各自特有的顺式元件, AhACP4启动子区包含根或芽顶端分生组织表达调控元件WUS, 而AhACP5启动子区则含有侧芽萌动和伸展所需的多个关键调控元件E2FB、TELO BOX和UP1, 推测它们的表达具有组织和发育阶段特异性。在进化上, 花生AhACP4与拟南芥AtACP4可能为直系同源基因, 但它们的表达模式产生了分歧, AhACP4为组成型表达, AtACP4主要在叶中表达; 与AtACP4启动子相比, 花生AhACP4启动子区中参与光调控相关元件明显减少。
[1]Baerson S R, Lamppa G K. Developmental regulation of an acyl carrier gene promoter in vegetative and reproductive tissues. Plant Mol Biol, 1993, 22: 255–267[2]Branen J K, Chiou T J, Engeseth N J. Overexpression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in Arabidopsis. Plant Physiol, 2001, 127: 222–229[3]Post-Beittenmiller M A, Schmid K M, Ohlrogge J B. Expression of holo and apo forms of spinach acyl Carrier protein-1 in leaves of transgenic tobacco plants. Plant Cell, 1989, 1: 889–899[4]Ohlrogge J B, Kuo T M. Plants have isoforms of acyl Carrier protein that are expressed differently in different tissues. J Biol Chem, 1985, 260: 8032–8037[5]Safford R, Windust J H C, Lucas C, De Silva J, James C M, Hellyer A, Smith C G, Slabas A R, Hughes S G. Plastid-localized seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family. Eur J Biochem, 1988, 174: 287–295[6]Kopka J, Robers M, Schuch R, Spener F. Acyl carrier Proteins from developing seeds of Cuphea lanceolata Ait. Planta, 1993, 191: 102–111[7]Schü tt B S, Brummel M, Schuch R, Spener F. The Role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids. Planta, 1998, 205: 263–268[8]Baerson S R, Vander Heiden M G, Lamppa G K. Identification of domains in an Arabidopsis acyl carrier protein gene promoter required for maximal organ-specific expression. Plant Mol Biol, 1994, 26: 1947–1959[9]Baerson S R, Vander Heiden M G, Lamppa G K. Overlapping yet distinct promoter activities of two Arabidoposis genes coding for nearly identical isoforms of the acyl carrier protein. Int J Plant Sci, 1998, 159: 533–538[10]Li M J, Wang X J, Su L, Bi Y P, Wan S B. Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L. Plant Mol Biol Rep, 2010, 28: 365–372[11]陈高, 单雷, 周丽侠, 唐桂英, 毕玉平. 花生总RNA提取方法比较研究. 中国农学通报, 2011, 27: 214–218 Chen G, Shan L, Zhan L X, Tang G Y, Bi Y P. The comparison of different methods for isolating total RNA from peanuts. Chin Agric Sci Bull, 2011, 27: 214–218 (in Chinese with English abstract)[12]Thompson J D, Gibson T D, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876–4882[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599[14]Song P, Allen R D. Identification of a cotton fiber specific acyl carrier protein cDNA by differential display. Biochim Biophys Acta, 1997, 1351: 305–312[15]Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol, 2005, 138: 757–766[16]Zhao Y, Hu Y F, Dai M Q, Huang L M, Zhou D X. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009, 21: 736–748[17]Branen J K, Shintani D K, Engeseth N J. Expression of antisense acyl carrier protein-4 reduces lipid content in Arabidopsis leaf tissue. Plant Physiol, 2003, 132: 748–756[18]Tang G Y, Wei L Q, Liu Z J, Bi Y P, Shan L. Ectopic expression of peanut acyl carrier protein in tobacco alters fatty acid composition in the leaf and resistance to cold stress. Biol Plant, 2012, 56: 493–501[19]赵学彬, 周丽侠, 唐桂英, 单雷. 花生AhFAD2A基因启动子的克隆与序列分析. 山东农业科学, 2013, 45(1): 30–33Zhao X B, Zhou L X, Tang G Y, Shan L. Cloning and sequence analysis of AhFAD2A gene promoter from Arachis hypogaea L. Shandong Agric Sci, 2013, 45(1): 30–33 (in Chinese with English abstract)[20]Kim M J, Shin J S, Kim J K, Suh M C. Genomic structures and characterization of the 5?-?anking regions of acyl carrier protein and δ4-palmitoyl-ACP desaturase genesfrom Coriandrum sativum. Biochim Biophys Acta, 2005, 1730: 235–244[21]Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 2003, 132: 681–697[22]Kim M J, Kim J K, Shin J S, Suh M C. The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol, 2007, 64: 453–66[23]Kim M J, Kim H J, Shin J S, Chung C H, Ohlrogge J B, Suh M C. Seed-speci?c expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5?UTR intron. Mol Genet Genomics, 2006, 276: 351–368 |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[7] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[8] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[9] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[10] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[11] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[12] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[13] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[14] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[15] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
|