欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (03): 381-389.doi: 10.3724/SP.J.1006.2014.00381

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

花生质体型酰基载体蛋白基因5'侧翼调控序列的克隆与分析

单雷1,2,唐桂英1,徐平丽1,赵学彬1,3,柳展基1   

  1. 1 山东省农业科学院高新技术研究中心 / 山东省作物遗传改良与生态生理重点实验室, 山东济南 250100; 2 山东大学农学院, 山东济南 250100; 3 山东师范大学生命科学学院, 山东济南 250014
  • 收稿日期:2013-07-03 修回日期:2013-10-31 出版日期:2014-03-12 网络出版日期:2014-01-16
  • 通讯作者: 单雷, E-mail: shlei1025@sina.com, Tel: 0531-83179435
  • 基金资助:

    本研究由山东省自然科学基金项目(ZR2009DM013)和山东省科技发展计划项目(2012GNC1101)资助。

Cloning and Analysis of 5′ Flanking Regions of Arachisis hypogaea L. Genes Encoding Plastidial Acyl Carrier Protein

SHAN Lei1,2,*,TANG Gui-Ying1,XU Ping-Li1,ZHAO Xue-Bin1,3,LIU Zhan-Ji1   

  1. 1 Hi-Tech Research Centre, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; 2 College of Agriculture, Shandong University, Jinan 250100, China; 3 College of Life Science, Shandong Normal University, Jinan 250014, China
  • Received:2013-07-03 Revised:2013-10-31 Published:2014-03-12 Published online:2014-01-16
  • Contact: 单雷, E-mail: shlei1025@sina.com, Tel: 0531-83179435

摘要:

采用染色体步移技术分别克隆3个花生质体型酰基载体蛋白(ACP)基因的5¢侧翼调控区序列, AhACP1AhACP4AhACP5基因5¢上游序列分别为53514001180 bp; 利用5¢RACE方法确定了这3个基因的转录起始位点, 分别位于起始密码ATG上游71 bp92 bp71 bp处。利用生物信息学软件分析了花生ACPs启动子区包含的主要调控元件, 发现尽管花生AhACP4AhACP5基因在根、茎、叶、花和不同发育期种子中的基本表达模式相似, 但它们的启动子中包含各自特有的顺式元件, AhACP4启动子区包含根或芽顶端分生组织表达调控元件WUS, AhACP5启动子区则含有侧芽萌动和伸展所需的多个关键调控元件E2FBTELO BOXUP1, 推测它们的表达具有组织和发育阶段特异性。在进化上, 花生AhACP4拟南芥AtACP4可能为直系同源基因, 但它们的表达模式产生了分歧, AhACP4为组成型表达, AtACP4主要在叶中表达; AtACP4启动子相比, 花生AhACP4启动子区中参与光调控相关元件明显减少。

关键词: 质体型酰基载体蛋白, 启动子, 调控元件, 花生

Abstract:

We cloned the 5′ flanking fragments of three peanut plastidial acyl carrier protein (ACP) genes AhACP1, AhACP4,and AhACP5 by chromosome walking method, and the fragments sizes were 535, 1400, and 1180 bp, respectively. Using 5′ RACE (5′ Rapid Amplification of cDNA End), the transcription start sites of the three genes were localized on 71, 92, and 71 bp from the translation initiation codon ATG, respectively. The crucial regulation elements in promoters of three peanut ACP genes and four Arabidopsis ACP genes were further analyzed with softwares PLACE and Plant CARE (http://www.dna.affrc.go.jp/PLACE; http://bioinformatics.psb.ugebp.be/webtools/plabpcare/html), showing that although AhACP4 and AhACP5 had similar expression patterns in root, stem, leaf, flower and seed at different development stages, their promoter regions contained their specific cis-elements. For instance, the promoter region of AhACP4 consisted of the regulation element WUS expressingin meristems of root or shoot primordia while that of AhACP5 had several key regulation elements such as E2FB, TELO BOX, and UP1 required in sprouting and expansion of axillary shoots, suggesting that their expression patterns may be various in different tissues and development stages. This study also indicated that the expression profiles of orthologous genes peanut AhACP4 and Arabidopsis AtACP4 diverged in evolution, and the AhACP4 gene expressed in a constitutive pattern while the AtACP4 expressed mainly in leaf, and in comparison with the promoter region of AtACP4, that of AhACP4 contained fewer light regulation elements.

Key words:  Plastidial acyl carrier protein (ACP), Promoter, Regulation element, Peanut (Arachis hypogaea L.)

[1]Baerson S R, Lamppa G K. Developmental regulation of an acyl carrier gene promoter in vegetative and reproductive tissues. Plant Mol Biol, 1993, 22: 255–267

[2]Branen J K, Chiou T J, Engeseth N J. Overexpression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in Arabidopsis. Plant Physiol, 2001, 127: 222–229

[3]Post-Beittenmiller M A, Schmid K M, Ohlrogge J B. Expression of holo and apo forms of spinach acyl Carrier protein-1 in leaves of transgenic tobacco plants. Plant Cell, 1989, 1: 889–899

[4]Ohlrogge J B, Kuo T M. Plants have isoforms of acyl Carrier protein that are expressed differently in different tissues. J Biol Chem, 1985, 260: 8032–8037

[5]Safford R, Windust J H C, Lucas C, De Silva J, James C M, Hellyer A, Smith C G, Slabas A R, Hughes S G. Plastid-localized seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family. Eur J Biochem, 1988, 174: 287–295

[6]Kopka J, Robers M, Schuch R, Spener F. Acyl carrier Proteins from developing seeds of Cuphea lanceolata Ait. Planta, 1993, 191: 102–111

[7]Schü tt B S, Brummel M, Schuch R, Spener F. The Role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids. Planta, 1998, 205: 263–268

[8]Baerson S R, Vander Heiden M G, Lamppa G K. Identification of domains in an Arabidopsis acyl carrier protein gene promoter required for maximal organ-specific expression. Plant Mol Biol, 1994, 26: 1947–1959

[9]Baerson S R, Vander Heiden M G, Lamppa G K. Overlapping yet distinct promoter activities of two Arabidoposis genes coding for nearly identical isoforms of the acyl carrier protein. Int J Plant Sci, 1998, 159: 533–538

[10]Li M J, Wang X J, Su L, Bi Y P, Wan S B. Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L. Plant Mol Biol Rep, 2010, 28: 365–372

[11]陈高, 单雷, 周丽侠, 唐桂英, 毕玉平. 花生总RNA提取方法比较研究. 中国农学通报, 2011, 27: 214–218

Chen G, Shan L, Zhan L X, Tang G Y, Bi Y P. The comparison of different methods for isolating total RNA from peanuts. Chin Agric Sci Bull, 2011, 27: 214–218 (in Chinese with English abstract)

[12]Thompson J D, Gibson T D, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876–4882

[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599

[14]Song P, Allen R D. Identification of a cotton fiber specific acyl carrier protein cDNA by differential display. Biochim Biophys Acta, 1997, 1351: 305–312

[15]Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol, 2005, 138: 757–766

[16]Zhao Y, Hu Y F, Dai M Q, Huang L M, Zhou D X. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009, 21: 736–748

[17]Branen J K, Shintani D K, Engeseth N J. Expression of antisense acyl carrier protein-4 reduces lipid content in Arabidopsis leaf tissue. Plant Physiol, 2003, 132: 748–756

[18]Tang G Y, Wei L Q, Liu Z J, Bi Y P, Shan L. Ectopic expression of peanut acyl carrier protein in tobacco alters fatty acid composition in the leaf and resistance to cold stress. Biol Plant, 2012, 56: 493–501

[19]赵学彬, 周丽侠, 唐桂英, 单雷. 花生AhFAD2A基因启动子的克隆与序列分析. 山东农业科学, 2013, 45(1): 30–33

Zhao X B, Zhou L X, Tang G Y, Shan L. Cloning and sequence analysis of AhFAD2A gene promoter from Arachis hypogaea L. Shandong Agric Sci, 2013, 45(1): 30–33 (in Chinese with English abstract)

[20]Kim M J, Shin J S, Kim J K, Suh M C. Genomic structures and characterization of the 5?-?anking regions of acyl carrier protein and δ4-palmitoyl-ACP desaturase genesfrom Coriandrum sativum. Biochim Biophys Acta, 2005, 1730: 235–244

[21]Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 2003, 132: 681–697

[22]Kim M J, Kim J K, Shin J S, Suh M C. The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol, 2007, 64: 453–66

[23]Kim M J, Kim H J, Shin J S, Chung C H, Ohlrogge J B, Suh M C. Seed-speci?c expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5?UTR intron. Mol Genet Genomics, 2006, 276: 351–368

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!