作物学报 ›› 2014, Vol. 40 ›› Issue (03): 390-396.doi: 10.3724/SP.J.1006.2014.00390
徐文亭,王诚,徐晓洋,牛二利,蔡彩平,郭旺珍*
XU Wen-Ting,WANG Cheng,XU Xiao-Yang,NIU Er-Li,CAI Cai-Ping,GUO Wang-Zhen*
摘要:
[1]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants and crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401–407[2]Roitsch T, González M C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci, 2004, 9: 606–613[3]Davies C, Robinson S P. Sugar accumulation in grape berries: cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol, 1996, 111: 275–283[4]Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol, 1999, 17: 708–711[5]Klann E M, Chetelat R T, Bennett A B. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol, 1993, 103: 863–870[6]Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3: 942–955[7]Kohorn B D, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A, Byers N. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J, 2006, 46: 307–316[8]Roitsch T, González M C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci, 2004, 9: 606–613[9]Wind J, Smeekens S, Hanson J. Sucrose: metabolite and signaling molecule. Phytochemistry, 2010, 71: 1610–1614[10]Basra A S, Malik C. Development of the cotton fiber. Int Rev Cytol, 1984, 89: 65–113[11]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366[12]Wang L, Li X R, Lian H, Ni D A, He Y K, Chen X Y, Ruan Y L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol, 2010, 154: 744–756[13]Taliercio E, Scheffler J, Scheffler B. Characterization of two cotton (Gossypium hirsutum L.) invertase genes. Mol Biol Rep, 2010, 37: 3915–3920[14]Eddy S R. Accelerated profile HMM searches. PLoS Comput Biol, 2011, 7: e1002195[15]武耀廷, 刘进元. 一种高效提取棉花不同组织总RNA的热硼酸改良法. 棉花学报, 2004, 16(2): 67–71Wu Y T, Liu J Y. A modified hot borate method for efficient isolation of total RNA from different cotton tissues. Cotton Sci, 2004, 16(2): 67–71 (in Chinese with English abstract)[16]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167 Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci, 2003, 15: 166–167 (in Chinese with English abstract) [17]Paterson A H, Brubaker C L, Jonathan F. Rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127[18]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 2001, 29: e45[19]Zhao L, Lv Y D, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012, 13: 539[20]Wang C, Zhang T Z, Guo W Z. The im mutant gene negatively affects many aspects of fiber quality traits and lint percentage in cotton. Crop Sci, 2013, 53(1): 27–37[21]Ross H A, Davies H V, Burch L R, Viola R, McRae D. Developmental changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum tuberosum). Physiol Plant, 1994, 90: 748–756[22]Tang G Q, Luscher M, Sturm A. Antisense repression and vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell, 1999, 11: 177–189[23]Andersen M N, Asch F, Wu Y, Jensen C R, Naested H, Mogensen V O, Koch K E. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol, 2002, 130: 591–604[24]Klann E M, Hall B, Bennett A B. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol, 1996, 112: 1321–1330[25]Davies C, Robinson S P. Sugar accumulation in grape berries: cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol, 1996, 111: 275–283[26]Yau Y, Simon, P. A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol, 2003, 53: 151–162[27]Sergeeva L I, Keurentjes J J B, Bentsink L, Vonk J, van der Plas L H W, Koornneef M, Vreugdenhil D. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Nat Acad Sci USA, 2006, 103: 2994–2999[28]Long J C, Zhao W, Rashotte A M, Muday G K, Huber S C. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol, 2002, 128: 591–602[29]Trouverie J, Thévenot C, Rocher J P, Sotta B, Prioul J L. The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. J Exp Bot, 2003, 54: 2177–2186[30]Mitsuhashi W, Sasaki S, Kanazawa A, Yang Y Y, Kamiya Y, Toyomasu T. Differential expression of acid invertase genes during seed germination in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2004, 68: 602–608[31]Trouverie J, Chateau-Joubert S, Thévenot C, Jacquemot M P, Prioul J L. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta, 2004, 219: 894–905[32]Li Z, Palmer W M, Martin A P, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan Y L. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot, 2012, 63: 1155–1166[33]Xu J, Avigne W T, McCarty D R, Koch K E. A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: evidence from a maize invertase gene family. Plant Cell, 1996, 8: 1209–1220 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[6] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[7] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[8] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[9] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[10] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[11] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[12] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[13] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[14] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[15] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
|