欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (03): 531-541.doi: 10.3724/SP.J.1006.2014.00531

• 耕作栽培·生理生化 • 上一篇    下一篇

不同抗旱性花生品种根系形态及生理特性

厉广辉,万勇善*,刘风珍,张昆   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安271018
  • 收稿日期:2013-08-06 修回日期:2013-12-15 出版日期:2014-03-12 网络出版日期:2014-01-16
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-14), 国家自然科学基金项目(31201167)和山东省花生良种产业化工程项目资助。

Morphological and Physiological Traits of Root in Different Drought Resistant Peanut Cultivars

LI Guang-Hui, WAN Yong-Shan*, LIU Feng-Zhen, ZHANG Kun   

  1. National Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
  • Received:2013-08-06 Revised:2013-12-15 Published:2014-03-12 Published online:2014-01-16

摘要:

12个花生品种为试验材料, 在人工控水条件下, 通过苗期及结荚期干旱试验, 对比分析花生品种苗期根系性状与抗旱性的关系。结果表明, 花生苗期与结荚期抗旱性基本一致。利用产量抗旱系数可把12个花生品种的抗旱性划分为强、中、弱3, 抗旱性强的品种为A596、山花11和如皋西洋生, 中度抗旱品种为花育20、农大818、海花1号、山花9号和79266, 抗旱性弱的品种有ICG6848、白沙1016、花17和蓬莱一窝猴。山花11可作为花生强抗旱性鉴定的标准品种, 79266可作为花生弱抗旱性鉴定的标准品种。山花9号、山花11、花育20的根系抗旱机制为较大的根量及根系吸收能力, A596、如皋西洋生、农大818、山花11为较强的根系抗氧化能力及膜稳定性。相关分析表明, 苗期重度干旱胁迫下的单株根系干重、体积、总吸收面积、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量与品种抗旱系数的相关性达极显著水平, 对照与重度干旱胁迫下的以上性状呈极显著正相关。因此, 在花生出苗后10 d进行40%土壤相对含水量的干旱胁迫, 持续胁迫至出苗24 d的单株根系干重、体积、总吸收面积、根尖SOD活性和MDA含量可鉴定花生品种的根系抗旱能力, 正常水分下的性状值也能反映根系性状的抗旱级别。山花11可作为花生根系形态及生理优异抗旱性状鉴定的标准品种。

关键词: 花生品种, 干旱胁迫, 根系特性, 抗旱性

Abstract:

Drought stress is a serious constraint for peanut production worldwide. It is necessary to identify the drought resistance mechanisms of different peanut cultivars in drought-resistance breeding. Under the artificial water control condition, the peanut root morphological and physiological characteristics under drought stress at seedling stage and pod-setting stage were studied using 12 different drought-resistance peanut cultivars as material. The results showed that drought resistance at seedling stage was basically identical with that at pod-setting stage. According to yield-drought resistance coefficient, 12 peanut cultivars were divided into three grades: high-resistance, including A596, Shanhua 11, and Rugaoxiyangsheng; mid-resistance, including Huayu 20, Nongda 818, Haihua 1, Shanhua 9, and 79266; and weak-resistance, including ICG6848, Baisha 1016, Hua 17, and Penglaiyiwohou. In those peanut cultivars, Shanhua11 can be used as the standard cultivar for high drought resistance identification, and 79266 as the standard cultivar for weak one. The root drought resistance mechanism of 12 peanut cultivars were different, Shanhua 9, Shanhua11 and Huayu 20 presented a larger biomass and strong absorption capacity, while A596, Nongda 818, Shanhua 11 and Rugaoxiyangsheng had strong antioxidant capacity and membrane stability under drought stress. Correlations between drought resistance and root weight, volume, total absorption area per plant, root superoxide dismutase (SOD) activity, malondialdehyde (MDA) content under serious drought stress were significant, also under control condition. Therefore, under drought stress of 40% RWC for 10 to 24 d after germination, the root weight, volume, total absorption area per plant, SOD activity and MDA content could be used for identifies the drought resistance ability of peanut roots, the resistances degree also can be reflected by the indices above under normal water condition. Shanhua 11 can be used as a suitable standard cultivar for root morphological and physiological drought resistance characteristics identification in peanut

Key words: Peanut cultivars, Drought stress, Root traits, Drought resistance

[1]姜慧芳, 任小平. 干旱胁迫对花生叶片SOD活性和蛋白质的影响. 作物学报, 2004, 30: 169–174



Jiang H F, Ren X P. The effect on SOD activity and protein content in groundnut leaves by drought stress. Acta Agron Sin, 2004, 30: 169–174 (in Chinese with English abstract)



[2]严美玲, 李向东, 林英杰, 王丽丽, 周录英. 苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响. 作物学报, 2007, 33: 113–119



Yan M L, Li X D, Lin Y J, Wang L L, Zhou L Y. Effects of drought during seedling stage on physiological traits, yield and quality of different peanut cultivars. Acta Agron Sin, 2007, 33: 113–119 (in Chinese with English abstract)



[3]Kumar A, Singh P, Singh D P, Singh H, Sharma H C. Differences in osmotic regulation in Brassica species. Ann Bot, 1984, 54: 537–541



[4]Upadhyaya H D.Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci, 2005, 45: 1432–1440



[5]Kamoshita A, Babu R C, Boopathi N M, Fukai S. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res, 2008, 109: 1–23



[6]张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价. 作物学报, 2012, 38: 495–504



Zhang Z M, Dai L X, Ding H, Chen D X, Yang W Q, Song W W, Wan S B. Identification and evaluation of drought resistance in different peanut varieties widely grown in northern China. Acta Agron Sin, 2012, 38: 495–504 (in Chinese with English abstract)



[7]王贺正, 李艳, 马均, 张荣萍, 李旭毅, 汪仁全. 水稻苗期抗旱性指标的筛选. 作物学报, 2007, 33: 1523–1529



Wang H Z, Li Y, Ma J, Zhang R P, Li X Y, Wang R Q. Screening indexes of drought resistance during seedling stage in rice. Acta Agron Sin, 2007, 33: 1523–1529 (in Chinese with English abstract)



[8]王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40: 2452–2459



Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Sci Agric Sin, 2007, 40: 2452–2459 (in Chinese with English abstract)



[9]严美玲, 李向东, 矫岩林, 王丽丽. 不同花生品种的抗旱性比较鉴定. 花生学报, 2004, 33: 8–12



Yan M L, Li X D, Jiao Y L, Wang L L. Identification of drought resistance in different peanut varieties. J Peanut Sci, 2004, 33: 8–12 (in Chinese with English abstract)



[10]张智猛, 万书波, 戴良香, 宋文武, 陈静, 石运庆. 花生抗旱性鉴定指标的筛选与评价. 植物生态学报, 2011, 35: 100–109



Zhang Z M, Wan S B, Dai L X, Song W W, Chen J, Shi Y Q. Estimating and screening of drought resistance indexes of peanut. Chin J Plant Ecol, 2011, 35: 100–109 (in Chinese with English abstract)



[11]谭忠, 朱新亮, 刘文霞, 吴学军. 花生种质资源抗旱性鉴定及综合利用评价. 中国油料, 1997, 19: 73–75



Tan Z, Zhu X L, Liu W X, Wu X J. Drought-resistant characterization and evaluation of pre-selected groundnut germplasm. Oil Crops China, 1997, 19: 73–75 (in Chinese with English abstract)



[12]姜慧芳, 任小平, 段乃雄. 中国龙生型花生的耐旱性鉴定与综合评价. 中国农业科学, 1999, 32: 59–63



Jiang H F, Ren X P, Duan N X. Screening and evaluation for drought tolerance in Chinese dragon groundnut. Sci Agrica Sin, 1999, 32: 59–63 (in Chinese with English abstract)



[13]胡标林, 余守武, 万勇, 张铮, 邱兵余, 谢建坤. 东乡普通野生稻全生育期抗旱性鉴定. 作物学报, 2007, 33: 425–432



Hu B L, Yu S W, Wan Y, Zhang Z, Qiu B Y, Xie J K. Drought-resistance identification of Dongxiang common wild rice (Oryza rufipogon) in whole growth period. Acta Agron Sin, 2007, 33: 425–432 (in Chinese with English abstract)



[14]杨建昌, 王志琴, 朱庆森. 水稻品种的抗旱性及其生理特性的研究. 中国农业科学, 1995, 28: 65–72



Yang J C, Wang Z Q, Zhu Q S. Drought resistance and its physiological characteristics in rice varieties. Sci Agric Sin, 1995, 28: 65–72 (in Chinese with English abstract)



[15]慕自新, 张岁岐, 梁爱华, 梁宗锁. 玉米整株根系水导与其表型抗旱性的关系研究. 作物学报, 2005, 31: 203–208



Mu Z X, Zhang S Q, Liang A H, Liang Z S. Relationship between maize root hydraulic conductivity and drought resistance. Acta Agron Sin, 2005, 31: 203–208 (in Chinese with English abstract)



[16]段舜山, 谷文祥, 张大勇, 李凤民. 半干旱地区小麦群体的根系特征与抗旱性的关系. 应用生态学报, 1997, 8: 134–138



Duan S S, Gu W X, Zhang D Y, Li F M. Relationship between root system characteristics and drought resistance of wheat populations in semiarid region. Chin J Appl Ecol, 1997, 8: 134–138 (in Chinese with English abstract)



[17]Benjamin J G, Nielsen D C. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res, 2006, 97: 248–253



[18]Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote K J, Hoogenboom G, Patanothai A. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crops Res, 2011, 120: 262–270



[19]赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002. pp 45–47



Zhao S J, Shi G A, Dong X C. Plant Physiology Test Guide. Beijing: Chinese Agricultural Science and Technology Press, 2002. pp 45–47 (in Chinese)



[20]王爱国, 罗广华, 邵从本, 吴淑君, 郭俊彦. 大豆种子超氧物歧化酶的研究. 植物生理学报, 1983, 9: 77–84



Wang A G, Luo G H, Shao C B, Wu S J, Guo J Y. A study on the superoxide dismutase of soybean seeds. Acta Phytophysiol Sin, 1983, 9: 77–84 (in Chinese with English abstract)



[21]Wakamatsu K, Takahama U. Changes in peroxidase activity andin peroxidsae isozymes in carrot callus. Physiol Plant, 1993, 88: 167–171



[22]林植芳, 李双顺, 林桂珠, 孙谷畴, 郭俊彦. 水稻叶片的衰老与超氧物歧化酶活性的关系及脂质过氧化作用的关系. 植物学报, 1984, 26: 605–615



Lin Z F, Li S S, Lin G Z, Sun G C, Guo J Y. Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves. Acta Bot Sin, 1984, 26: 605–615 (in Chinese with English abstract)



[23]陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. pp 75–77



Chen J X, Wang X F. Plant Physiology Test Guide. Guangzhou: South China University of Technology Press, 2006. pp 75–77 (in Chinese)



[24]封海胜, 栾文琪. 中国花生品种志. 北京: 中国农业出版社, 1987. pp 1–4



Feng H S, Luan W Q. Peanut cultivars of China. Beijing: China agriculture press, 1987. pp 1–4 (in Chinese)



[25]张永清, 苗果园. 水分胁迫条件下有机肥对小麦根苗生长的影响. 作物学报, 2006, 32: 811–816



Zhang Y Q, Miao G Y. Effects of manure on root and shoot growth of winter wheat under water stress. Acta Agron Sin, 2006, 32: 811–816 (in Chinese with English abstract)



[26]杨守萍, 陈加敏, 刘莹, 喻德跃, 盖钧镒. 大豆苗期耐旱性与根系性状的鉴定和分析. 大豆科学, 2005, 24: 176–182



Yang S P, Chen J M, Liu Y, Yu D Y, Gai J Y. Identification and analysis of drought tolerance and root traits of seedlings in soybeans. Soybean Sci, 2005, 24: 176–182 (in Chinese with English abstract)



[27]梁银丽, 杨翠玲. 不同抗旱型小麦根系形态与生理特性对渗透胁迫的反应. 西北农业学报, 1995, 4: 31–36



Liang Y L, Yang C L. Responses of root system morphology and physiological characters on osmotic stress in drought resistance wheat varieties. Acta Agric Boreali-occident Sin, 1995, 4: 31–36 (in Chinese with English abstract)



[28]宋海星, 王学立. 玉米根系活力及吸收面积的空间分布变化. 西北农业学报, 2005, 14: 137–141



Song H X, Wang X L. The space distribution of the maize root activity and its absorbing area. Acta Agric Boreali-Occident Sin, 2005, 14: 137–141 (in Chinese with English abstract)



[29]刘莹, 盖钧镒, 吕慧能. 大豆根区逆境耐性的种质鉴定及其与根系性状的关系. 作物学报, 2005, 31: 1132–1137



Liu Y, Gai J Y, Lü H N. Identification of rhizosphere abiotic stress tolerance and related root traits in soybean [Glycine max (L.) Merr.]. Acta Agron Sin, 2005, 31: 1132–1137 (in Chinese with English abstract)



[30]Cristina S, Branka S, Flavia N I. Role of phenolics in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiol Plant, 2004, 122: 478–485



[31]齐伟, 张吉旺, 王空军, 刘鹏, 董树亭. 干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响. 应用生态学报, 2010, 21: 48–52



Qi W, Zhang J W, Wang K J, Liu P, Dong S T. Effects of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chin J Appl Ecol, 2010, 21: 48–52 (in Chinese with English abstract)



[32]尚晓颍, 刘化冰, 张小全, 林娟, 段旺军, 杨铁钊. 干旱胁迫对不同烤烟品种根系生长和生理特性的影响. 西北植物学报, 2010, 30: 357–361



Shang X Y, Liu H B, Zhang X Q, Lin J, Duan W J, Yang T Z. Growth and physiological characteristics of roots in different flue-cured tobacco varieties under drought stress. Acta Bot Boreal-Occident Sin, 2010, 30: 357–361 (in Chinese with English abstract)



[33]王思思, 张吉旺, 刘鹏, 董树亭, 王空军. 干旱对不同玉米品种苗期根系生理生化特性的影响. 山东农业科学, 2009, 6: 36–38



Wang S S, Zhang J W, Liu P, Dong S T, Wang K J. Effect of drought on root physiological and biochemical characters of different maize cultivars during seedling stage. Shandong Agric Sci, 2009, 6: 36–38 (in Chinese with English abstract)



[34]盖钧镒, 汪越胜, 张孟臣, 王继安, 常汝镇. 中国大豆品种熟期组划分的研究. 作物学报, 2001, 27: 286–292



Gai J Y, Wang Y S, Zhang M C, Wang J A, Chang R Z. Studies on the classification of maturity groups of soybeans in China. Acta Agron Sin, 2001, 27: 286–292 (in Chinese with English abstract)



[35]陈加敏. 大豆苗期耐旱性的鉴定及苗期耐旱性和根系性状的遗传研究. 南京农业大学硕士论文, 2004



Chen J M. Studies on Identification of Drought Tolerance and Genetic Mechanism of Drought Tolerance and Root Traits of Soybean Seedling. MS Thesis of Nanjing Agricultural University, 2004 (in Chinese with English abstract)

[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[3] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[4] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[5] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[6] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[7] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[8] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[9] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[10] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[11] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[12] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[13] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[14] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[15] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!