欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (05): 816-822.doi: 10.3724/SP.J.1006.2014.00816

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥

张高阳,祁建民*,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉   

  1. 福建农林大学/作物遗传育种与综合利用教育部重点实验室, 福建福州350002
  • 收稿日期:2013-06-14 修回日期:2014-01-12 出版日期:2014-05-12 网络出版日期:2014-02-14
  • 通讯作者: 祁建民, E-mail: qijm863@163.com
  • 作者简介:祁建民, E-mail: qijm863@163.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-19-E06), 农业部东南黄红麻科学观测实验站建设项目(农科教发2011.9)和引进国际先进农业科学技术计划项目(948计划)(013-270)资助。

Cloning for Cellulose Synthetase Gene CcCesA1 from Jute (Corchorus capsularis L.), Antisense Vector Construction, and Transformation of Arabidopsis

ZHANG Gao-Yang,QI Jian-Min*,XU Jian-Tang,NIU Xiao-Ping,ZHANG Li-Wu,ZHANG Yu-Jia,TAO Ai-Fen,FANG Ping-Ping,LIN Li-Hui   

  1. Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2013-06-14 Revised:2014-01-12 Published:2014-05-12 Published online:2014-02-14
  • Contact: 祁建民, E-mail: qijm863@163.com
  • About author:祁建民, E-mail: qijm863@163.com

摘要:

以圆果黄麻(Corchorus capsularis L.) “179”茎部韧皮为材料,利用同源克隆和RACE技术,克隆黄麻纤维素合成酶基因CcCesA1 5¢500 bp序列外的全部cDNA。其序列长度为2529 bp,编码627氨基酸残基,经Blast基因比对和蛋白质结构分析,确定是黄麻纤维素合成酶基因。半定量RT-PCR分析表明,CcCesA1在植株不同部位表达量具组织差异性,依次为茎部韧皮>>>顶芽>麻骨。利用CcCesA1基因部分cDNA序列和3¢UTR区,构建黄麻CcCesA1基因反义载体,用测序验证的阳性质粒转化模式植物拟南芥。Southern结果表明,外源基因以单拷贝方式整合进入基因组,转基因拟南芥生长严重受阻,植株变得矮小且茎部易弯曲倒伏,角果数量变少,长度变短,纤维素含量有不同程度的降低,本研究结果表明,所克隆的黄麻CcCesA1基因除了参与植物其他生理代谢过程外,还参与纤维素的生物合成。

关键词: 圆果黄麻(Corchorus capsularis. L), 纤维素合成酶, RACE, Southern杂交, 拟南芥

Abstract:

We took stem bark of jute cultivar 179 (Corchorus capsularis L.) as materials, successfully cloned the full-length cDNA of jute cellulose synthetase gene except 500 bp of 5' terminal,using homologous cloning and modified RACE techniques. The sequence length is 2529 bp, encoding a 627 amino acids protein. Gene alignment and protein structure analysis showed that it belongs to jute cellulose Synthetase gene family. Semi-quantitative RT-PCR analysis indicated that the expression level of CcCesA1 gene in different parts of plant was bark > root > leaf > bud > sticks. Using partial cDNA and 3' UTR region of CcCesA1 gene, constructed the antisense vector of the jute CcCesA1 gene, the positive plasmids were transformed into the model plant Arabidopsis thaliana. Southern blot analysis showed that the exogenous genes were transformed into Arabidopsis genome as one copy. The growth of tansgenic Arabidopsis was badly inhibited so that plants became dwarf with easing bending stem, shorter silique, and less silique numbers. This finding shows that CcCesA1 gene is involved in not only cellulose synthesis, but also other plant growth process.

Key words: Jute (Corchorus capsularis L.), Cellulose synthetase, RACE, Southern blot, Arabidopsis thalian

[1]Sarker R H, Al-Amin G M, Hoque M I. In vitro regeneration in three varieties of white jute (Corchorus capsularis L.). Plant Tissue Cult Biotechnol, 2007, 17: 11–18



[2]Pelmer D P. Cellulose biosynmesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plnat Mol Biol, 1999, 50: 245–276



[3]Pear J R, Kawagoe Y, Schreckengot W E. Higher plants contain homologs of the bacterial cesA genes encoding the catalytic subunit of cellulose synthetase. Proc Nad Acad Sci USA, 1996, 93: 12637–12642



[4]许雷, 刘一星, 方连玉. 大青杨纤维素合成酶PuCesA6基因cDNA的克隆及序列分析. 西南林业大学学报, 2012, 32(5): 26–32



Xu L, Liu Y X, Fang L Y. Cloning and sequence character analysis of full-length cDNA of cellulose synthetase PuCesA6 from populus ussuriebsis. J Southest For Univ, 2012, 32: 26–32 (in Chinese with English abstract)



[5]Fagarda M, Desnosa T, Despreza T, Goubeta F, Refregiera G, Mouillea G, McCannb M, Rayona C, Vernhettesa S, Höftea H. Procuste1 encode a cellulose Synthetase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell, 2000, 12: 2409–2423



[6]蒋杰, 揭雨成, 周清明, 周精华, 朱守晶, 邢虎成, 钟英丽. 苎麻纤维素合成酶基因BnCesAl全长cDNA的克隆与表达分析. 植物遗传资源学报, 2012, 13: 851–857



Jiang J, Jie Y C, Zhou Q M, Zhou J H, Zhou S J, Xing H C, Zhong Y L. Full-length cDNA cloning and express analysis of BnCesAl in ramie. J Plant Genet Resour, 2012, 13: 851–857 (in Chinese with English abstract)



[7]Brown R M, Saxena I M. Cellulose biosynthsis. a model for understanding the assembly of biopolymers. Plant Physiol Biochem, 2000, 38: 57–67



[8]Chu Z, Chen H, Zhang Y, Zhang Z, Zheng N, Yin B, Yan H, Zhu L, Zhao X, Yuan M, Zhang X, Xie Q. Knock out of the AtCESA2 gene affects microtubule orientation and causes abnonnal cell expansion in Arabidopsis. Plant Physiol, 2007, 143: 213–224



[9]邓雪柯, 殷建华, 曹毅. 3种5?RACE技术的比较与优化. 成都医学院学报, 2007, 2: 20–25



Deng X K, Yin J H, Cao Y. Comparison and improving of three 5?RACE methods. J Chengdu Med Coll, 2007, 2: 20–25 (in Chinese with English abstract)



[10]Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce J L, Estrella L H. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep, 2004, 22: 63–70



[11]Updegraff D M. Semi-micro determination of cellulose in biological materials. Anal Biochem, 1969, 32: 420–424



[12]Doblin M S, Kurek I, Jacob Wild D, Delmer D P. CeUulose biosynthesis in pIants from genes to rosettes. Plnat Cell Physiol, 2002, 43: 1407–1420



[13]邰付菊, 李学宝. 植物纤维素生物合成及其相关酶类. 细胞生物学杂志, 2004, 26: 490–494



Tai F J, Li X B. Cellulose biosynthesis in plant and enzymes involved in it. Chin J Cell Biol, 2004, 26: 490–494 (in Chinese with English abstract)



[14]Zhong R, MorrisonW H, Freshour G D, HahnM G,Ye Z H. Expression of a mutant form of cellulose synthase AtCesA7 causes dorninant negative effect on cellulose biosynthesis. Plant Physiol, 2003, 132: 789–795



[15]Tumer S R, somerville C R. collapsed xylem phenotype of Arabidopsis identifies mutants dencient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9: 689–701



[16]Taylor N G, Scheible W R, Cutler S, Somerville C R, Thmer S R. The irregular xylem 3 locus of Arabidopsis encodes a cellulose synthetase catalytic subunits are required for secondary cell wall synthesis. Plnat Cell, 1999, 11: 769–779



[17]Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S. Organization of cellulose synthetase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Thierry Desprez, 2007, 39: 15572–15577



[18]韩笑. 病原菌侵染与拟南芥纤维素合成酶基因表达分析. 华中农业大学硕士学位论文,2010. pp 45–48



Han X. Pathogen infection and cellulose Synthetase gene expression analysis in Arabidopsis. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2010. pp 45–48 (in Chinese with English abstract)



[19]Lane D, Wiedemeier A, Peng L, Hofte H, Hocart H, Birch R, BaskinT, Arioli T, Burn J, Betzner A, Williamson R E. Temperature-sensitive alleles of rsw2 link the KORRIGAN endo 1, 4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol, 2001, 126: 278-288



[20]Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 1998, 279: 717–720



[21]Richmond T A, Somerville C R. The cellulose synthetase superfamily. Plant Physiol, 2000, 124: 495–498



[22]Fujita M, Himmelspach R, Ward J, Whittington A, Hasenbein N, Liu C, Truong T T, Galway M E, Mansfield S D, Hocart C H, Wasteneys G O. The anisotropy1 D604N Mutation in the Arabidopsis cellulose synthetase catalytic domain reduces cell wall crystallinity and the velocity of cellulose Synthetase complexes. Plant Physiol, 2013, 162: 74–85



[23]Lin X, Kaul S, Rounsley S, Shea T P, Benito M I, Town C D, Fujii C Y, Mason T, Bowman C L. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature, 1999, 402: 761–768

[1] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[2] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[3] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[4] 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808.
[5] 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478.
[6] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[7] 刘芳,刘睿洋,彭烨,官春云. 甘蓝型油菜BnFAD2-C1基因全长序列的克隆、表达及转录调控元件分析[J]. 作物学报, 2015, 41(11): 1663-1670.
[8] 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716.
[9] 赵青平,赵翔,慕世超,肖慧丽,张骁. 拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定[J]. 作物学报, 2015, 41(04): 585-592.
[10] 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573.
[11] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[12] 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351.
[13] 刘江,孙全喜,李新征,亓宝秀. 球等鞭金藻Δ5去饱和酶基因IgD5在拟南芥中的功能鉴定[J]. 作物学报, 2013, 39(05): 928-934.
[14] 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569.
[15] 马兰,杜洪岩,李荣田. 甜菜单体附加系M14种子形成方式[J]. 作物学报, 2013, 39(03): 381-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!