作物学报 ›› 2013, Vol. 39 ›› Issue (05): 928-934.doi: 10.3724/SP.J.1006.2013.00928
刘江**,孙全喜**,李新征,亓宝秀
LIU Jiang**,SUN Quan-Xi**,LI Xin-Zheng*,QI Bao-Xiu*
摘要:
[1]Napier J A, Sayanova O. The production of very-long-chain PUFA biosynthesis in transgenic plants: towards a sustainable source of ?sh oils. Proc Nutr Soc, 2005, 64: 87–93[2]Funk C D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294: 1871–1875[3]Simopoulos A P. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr, 2002, 21: 495–505[4]Uauy R, Hoffman D R, Peirano P, Birch D G, Birch E E. Essential fatty acids in visual and brain development. Lipids, 2001, 36: 885–895[5]Heinz E. First breakthroughs in sustainable production of “oceanic fatty acids.” Eur J Lipid Sci Technol, 2006, 108: 1–3[6]Yokoo E M, Valente J G, Grattan L, Schmidt S L, Platt I, Silbergeld E K. Low level methylmercury exposure affects neuropsychological function in adults. Environ Health: A Global Access Sci Sour, 2003, 2: 8[7]Domergue F, Abbadi A, Heinz E. Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci, 2005, 10: 112–116[8]Kinney A J. Metabolic engineering in plants for human health and nutrition. Curr Opin Plant Biol, 2006, 17: 130–38[9]Hamada F, Otani M, Kim S H, Uchida H, Kajikawa M. Accumulation of γ-linolenic acid by overexpression of a liverwort Δ6 desaturase gene in transgenic rice. Plant Cell Physiol, 2006, 47(suppl-l): 195[10]Michaelson L V, Napier J A, Lewis M, Grif?ths G, Lazarus C M, Stobart A K. Functional identi?cation of a fatty acid Δ5 desaturase gene from Caenorhabditis elegans. FEBS Lett, 1998, 439: 215–218[11]Kaewsuwan S, Cahoon E B, Perroud P F, Wiwat C, Panvisavas N, Quatrano R S. Identification and functional characterization of the moss Physcomitrella patens delta5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J Biol Chem, 2006, 281: 21988–21997[12]Michaelson L V, Lazarus C M, Grif?ths G, Napier J A, Stobart A K. Isolation of a Δ5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem, 1998, 273: 19055–19059[13]Qi B X, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Stobart A K, Lazarus M C. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol, 2004, 22: 739–745[14]Kinney A J, Cahoon E B, Damude H G, Hitz W D, Kolar C W, Liu Z B. Production of very long chain polyunsaturated fatty acids in oilseed plants. WO 2004/071467 A2, 2004.[15]Sun Q-X(孙全喜), Li X-Y(李雪滢), Zheng D-S(郑德松), Liu J(刘江), Li X-Z(李新征), Qi B-X(亓宝秀). Isolation and functional analysis of a Δ5 desaturase from Isochrysis galbana. Acta Hyd Sin (水生生物学报), 2012, 36(3): 412–419 (in Chinese with English abstract)[16]Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem , 2008, 283: 22352–22362[17]Petrie J R, Shrestha P, Mansour M P, Nichols P D, Liu Q, Singh S P. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Met Eng, 2010, 12: 233–240[18]Petrie J R, Liu Q, Mackenzie A M, Shrestha P, Mansour M P, Robert S S, Frampton D F, Blackburn S I, Nichols P D, Singh S P. Isolation and characterisation of a high-ef?ciency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar Biotechnol, 2010 12: 233–240[19]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16: 735–743[20]Zhou X R, Robert S S, Petrie J R, Frampton D M F, Mansour M P, Blackburn S I, Nichols P D, Green A G, Singh S P. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry, 2007, 68: 785–96[21]Qiu X, Hong H, Mackenzie S L. Identification of a delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem, 2001, 276: 31561–31566[22]Venegas-Calerón M, Sayanova O, Napier J A. An alternative to ?sh oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res, 2010, 49: 108–119[23]Qi B, Beaudoin F, FraseR T, Stobart A K, Napier J A, Lazarus C M. Identification of a cDNA encoding a novel C18-delta(9) polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett, 2002, 510: 159–165[24]Pereira S L, Leonard A E, Huang Y S, Chuang L T, Mukerji P. Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J, 2004, 384(Pt 2): 357–366[25]Tonon T, Sayanova O, Michaelson L V, Qing R, Harvey D, Larson T R, Li Y, Napier J A, Graham I A. Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J, 2005, 272: 3401–3412[26]Sayanova O, Beaudoin F, Michaelson V L, Shewry R P, Napier J A. Identi?cation of Primula fatty acid Δ6-desaturases with n-3 substrate preference. FEBS Lett, 2003, 542: 100–104[27]Zheng X Z, Ding Z K, Xu Y Q, Monroig O, Morais S, Tocher D R. Physiological roles of fatty acyl desaturases and elongases in marine ?sh: Characterisation of cDNA of fatty acyl Δ6 desaturase and elovl5 elongase of cobia (Rachycentron canadum). Aquaculture, 2009, 290: 122–131[28]Tripodi K E J, Buttigliero L V, Altabe S G, Uttaro A D. Functional characterization of front-end desaturases from trypanosomatids depicts the ?rst polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J, 2006, 273: 271–280[29]Dormergue F, Lercgl J, Zahringer U, Heinz E. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem, 2002, 269, 4105–4113[30]Cho H P, Nakamura M, Clarke S D. Cloning, expression, and fatty acid regulation of the human Δ5 desaturase. J Biol Chem, 1999, 274: 37335–37339[31]Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem, 2008, 283: 22352–22362[32]Kajikawa M, Yamato K T, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, Sakai Y, Fukuzawa H, Ohyama K. Isolation and characterization of Δ6-desaturase, an ELO-like enzyme and Δ5-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol, 2004, 54: 335–352[33]Iskandarov U, Goldberg J L, Cohen Z. Identi?cation and Characterization of Δ12, Δ6, and Δ5 Desaturases from the Green Microalga Parietochloris incisa. Lipids, 2010, 45: 519–530[34]Hornung E, Korfei M, Pernstich C, Struss A, Kindl H, Fulda M, Feussner I. Specific formation of arachidonic acid and eicosapentaenoic acid by a front-end Δ5-desaturase from Phytophthora megasperma. Biochim Biophys Acta, 2005, 1686: 181–189[35]Hong H, Datla N, MacKenzie S L, Qiu X. Isolation and characterization of a delta5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops. Lipids, 2002, 37: 863–868[36]Watts J L, Browse J. Isolation and characterization of a delta 5-fatty acid desaturase from Caenorhabditis elegans. Arch Biochem Biophys, 1999, 362: 175–182 |
[1] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[2] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[3] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[4] | 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808. |
[5] | 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478. |
[6] | 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695. |
[7] | 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716. |
[8] | 赵青平,赵翔,慕世超,肖慧丽,张骁. 拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定[J]. 作物学报, 2015, 41(04): 585-592. |
[9] | 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573. |
[10] | 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578. |
[11] | 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822. |
[12] | 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351. |
[13] | 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569. |
[14] | 习雨琳,周朋,宋梅芳,李志勇,孟凡华,杨建平. 拟南芥RBCS-1A基因受光调节表达模式及其启动子遗传转化应用评价[J]. 作物学报, 2012, 38(09): 1561-1569. |
[15] | 尹明智, 官梅, 肖钢, 李栒, 官春云. DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化[J]. 作物学报, 2011, 37(07): 1196-1204. |
|