作物学报 ›› 2013, Vol. 39 ›› Issue (05): 935-942.doi: 10.3724/SP.J.1006.2013.00935
高庆华1,孟义江1,张萃1,贾盟1,刘钊1,侯明明1,金德敏2,李雪姣1,牛东东1,缪刘杨1,郭乐群2,窦世娟1,刘丽娟1,李莉云1,翟文学2,刘国振1,*
GAO Qing-Hua1,MENG Yi-Jiang1,ZHANG Cui1,JIA Meng1,LIU Zhao1,HOU Ming-Ming1,JIN De-Min2,LI Xue-Jiao1,NIU Dong-Dong1,MIAO Liu-Yang1,GUO Le-Qun2,DOU Shi-Juan1,LIU Li-Juan1,LI Li-Yun1,ZHAI Wen-Xue2,LIU Guo-Zhen1,*
摘要:
降低玉米植酸含量对于改善玉米营养品质具有重要的意义,挖掘低植酸玉米种质,培育低植酸品种是一种有效降低植酸的途径。在前期工作中,我们筛选获得并初步鉴定了1个低植酸的玉米自交系齐319。本研究进一步鉴定了该自交系的植酸含量,发现它仅为常规玉米自交系的1/4左右,田间发现,其发芽率略低,但发芽后的植株生长正常,进而利用齐319与Lpa241杂交获得F2群体,分析表明F2群体的植酸含量呈现分离, 符合3∶1比例, 确定该性状受隐性单基因控制,在此基础上,初步筛选了与低植酸性状连锁的分子标记,发现第2染色体长臂上的2个标记(IDP7818和IDP7635)与低植酸性状连锁。这一工作为分子标记辅助的玉米低植酸育种奠定了基础。
[1]Oatway L, Vasanthan T, Helm J H. Phytic acid. Food Rev Int, 2001, 17: 419–431[2]Lott J N A, Ockenden I, Raboy V, Batten G D. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res, 2000, 10: 11–33[3]Reddy N R, Pierson M D, Sathe S K, Salunlche D K. Phytates in Cereals and Legumes. Florida: CRC Press, 1989[4]O'Dell B L, De Boland A R, Koirtyohann S R. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem, 1972, 20: 718–723[5]Paik I K. Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production. Asian Austral J Anim Sci, 2001, 14: 384–394[6]Correll D L. The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual, 1998, 27: 261–266[7]Hart M R, Quin B F, Nguyen M L. Phosphorus runoff from agricultural land and direct fertilizer effects. J Environ Qual, 2004, 33: 1954–1972[8]Reddy K R, Kadlec R H, Flaig E, Gale P M. Phosphorus retention in streams and wetlands: a review. Crit Rev Env Sci Tec, 1999, 29: 83–146[9]Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol, 2000, 250: 133–167[10]Lopez H W, Leenhardt F, Coudray C, Remesy C. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Tech, 2002, 37: 727–739[11]Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski M C, Shi J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Res, 2008, 17: 633–643[12]Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T, Murthy P P, Sheridan W F, Ertl D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol, 2000, 124: 355–368[13]Pilu R, Panzeri D, Gavazzi G, Rasmussen S K, Consonni G, Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet, 2003, 107: 980–987[14]Guttieri M, Bowen D, Dorsch J A, Raboy V, Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci, 2004, 44: 418–424[15]Larson S R, Rutger J N, Young K A, Raboy V. Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci, 2000, 40: 1397–1405[16]Wilcox J R, Premachandra G S, Young K A, Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci, 2000, 40: 1601–1605[17]Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 2007, 25: 930–937[18]Cerino Badone F, Amelotti M, Cassani E, Pilu R. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize. J Hered, 2012, 103: 598–605[19]Shi J, Wang H, Hazebroek J, Ertl D S, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J, 2005, 42: 708–719[20]Bregitzer P, Raboy V. Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci, 2006, 46: 1318–1322[21]Oltmans S E, Fehr W R, Welke G A, Raboy V, Peterson K L. Agronomic and seed traits of soybean lines with low–phytate phosphorus. Crop Sci, 2005, 45: 593–598[22]Pilu R, Panzeri D, Cassani E, Cerino Badone F, Landoni M, Nielsen E. A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity, 2009, 102: 236–245[23]Shukla S, VanToai T T, Pratt R C. Expression and nucleotide sequence of an INS (3) P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.). J Agric Food Chem, 2004, 52: 4565–4570[24]Shi J, Wang H, Wu Y, Hazebroek J, Meeley R B, Ertl D S. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol, 2003, 131: 507–515[25]Israel D W, Kwanyuen P, Burton J W. Genetic variability for phytic acid phosphorus and inorgaic phosphorus in seeds of soybeans in maturity groups V, VI, and VII. Crop Sci, 2006, 46: 67–71[26]Xu X H, Zhao H J, Liu Q L, Frank T, Engel K H, An G, Shu Q Y. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet, 2009, 119: 75–83[27]Feng X, T. Yoshida K. Molecular approaches for producing low-phytic-acid grains in rice. Plant Biotechnol, 2004, 21: 183–189[28]Kuwano M, Mimura T, Takaiwa F, Yoshida K T. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J, 2009, 7: 96–105[29]Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida K. Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed, 2006, 18: 263–272[30]Kuwano M, Takaiwa F, Yoshida K T. Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles. Plant Cell Physiol, 2009, 50: 1387–1392[31]Kim S I, Andaya C B, Newman J W, Goyal S S, Tai T H. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet, 2008, 117: 1291–1301[32]Andaya C B, Tai T H. Fine mapping of the rice low phytic acid (Lpa1) locus. Theor Appl Genet, 2005, 111: 489–495[33]Kim S I, Andaya C B, Goyal S S, Tai T H. The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet, 2008, 117: 769–779[34]Wang X-Y(王雪艳), Wang Z-H(王忠华), Mei S-F(梅淑芳), Hong J(洪隽), Shu Q-Y(舒庆尧), Wu D-X(吴殿星). Brief report on screening maize mutants with high inorganic phosphorus and low phytic acid content. Acta Agric Nucl Sin (核农学报), 2006, 20(1): 404–408 (in Chinese with English abstract)[35]Wang H(王晖), Chen J-T(陈景堂), Liu L-J(刘丽娟), Chen H(陈浩), Liu G-Z(刘国振). Identification of maize low phytic acid inbred lines and primary study of its genetic mechanism. Acta Agron Sin (作物学报), 2008, 34(1): 95–99 (in Chinese with English abstract)[36]Ma L(马磊), Li P(李盼), Chen Z(陈哲), Zhao Y-F(赵永锋), Zhu L-Y(祝丽英), Huang Y-Q(黄亚群), Chen J-T(陈景堂). Genetic analysis and identification of maize (Zea mays L.) low phytic acid inbred lines. Sci Agric Sin (中国农业科学), 2011, 44(3): 447–455 (in Chinese with English abstract)[37]Pilu R, Landoni M, Cassani E, Doria E, Nielsen E. The maize mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci, 2005, 45: 2096–2105[38]Raboy V. Low-phytic-acid grains. Food Nutr Bull, 2000, 21: 423–427[39]Dorsch J A, Cook A, Young K A, Anderson J M, Bauman A T, Volkmann C J, Murthy P P, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 2003, 62: 691–706[40]Chen P S, Toribara T Y, Warner H. Microdetermination of phosphorus. Anal Chem, 1956, 28: 1756–1758[41]Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: version II. Plant Mol Biol Rep, 1983, 1: 19–21[42]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174[43]Strother S. Homeostasis in germinating seeds. Ann Bot, 1980, 45: 217–218[44]Ye J-C(叶金才). Practices and thoughts on breeding of good maize inbreds and high heterosis hybrids using exogenous germplasm. Shandong Agric Sci (山东农业科学), 2000, (3): 11–13 (in Chinese with English abstract)[45]Meng Z-D(孟昭东), Guo Q-F(郭庆法), Wang L-M(汪黎明), Liu Z-X(刘治先), Zhang F-J(张发军), Ding Z-H(丁照华), Han J(韩静), Zhang Q-W(张庆伟). Strategies used in the breeding process of high-yield maize hybrid Ludan 981. J Maize Sci (玉米科学), 2003, 11(3): 54–56 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|