作物学报 ›› 2013, Vol. 39 ›› Issue (05): 943-949.doi: 10.3724/SP.J.1006.2013.00943
• 研究简报 • 上一篇
李忠芳1,2,徐明岗1,*,张会民1,孙楠1,娄翼来1
LI Zhong-Fang1,2,XU Ming-Gang1,*,ZHANG Hui-Min1,SUN Nan1,LOU Yi-Lai1
摘要:
系统分析我国南方双季典型稻区福建省白沙、江西省进贤、江西省南昌及湖南省望城4个水稻长期施肥试验资料,研究化肥N、P、K (氮、磷、钾)的不同组合(NP, NK, NPK)、化肥配施有机肥(NPKM)及不施肥(CK)各处理水稻的产量差异、变化趋势。结果显示,不同施肥条件下各试验点上水稻产量差异大,试验期内各施肥处理较CK的总增产率分别为NPKM 84.3%、NPK 68.1%、NP 42.9%和NK 39.9%,其中NPKM总体上显著高于NPK。长期配施NPK或NPKM肥产量较稳定或呈上升趋势,尤其是晚稻,而仅施NK均呈下降或极显著下降趋势(周年变化幅度为-103~ -201 kg hm-2 yr-1),其他施肥处理晚稻产量相对稳定。不同试验点间施磷量较高(52 kg hm-2 yr-1)的南昌点产量相对稳定,而施磷量较低(24 kg hm-2 yr-1)的白沙点各处理均呈显著下降趋势。本试验条件下,施肥投入不足又特别是施磷肥量低或不施磷为早稻产量下降的主要驱动因素。合理施用NPK肥,配合有机肥,为推荐的施肥模式,为了使试验点双季稻产量稳定且不呈下降趋势,需年施纯磷50.0~63.9 kg hm-2, 且适当偏重于早稻季。
[1]Xin J-S(辛景树), Xu M-G(徐明岗), Tian Y-G(田有国). Soil Quality Changes of Cultivated Land in China (耕地质量演变趋势研究). Beijing: China Agricultural Science and Technology Press, 2006. p 11 (in Chinese)[2]Xu M-G(徐明岗), Liang G-Q(梁国庆), Zhang F-D(张夫道). Variation of Soil Fertility in China (中国土壤肥力演变). Beijing: China Agricultural Science and Technology Press, 2006. p 11 (in Chinese)[3]Li Z-F(李忠芳), Xu M-G(徐明岗), Zhang H-M(张会民), Zhang W-J(张文菊), Gao J(高静). Grain yield trends of different food crops under long-term fertilization in China. Sci Agric Sin, 2009, 42(7): 2407–2414 (in Chinese with English abstract)[4]Li Z-F(李忠芳), Xu M-G(徐明岗), Zhang H-M(张会民), Zhang S-X(张淑香), Zhang W-J(张文菊). Sustainability of crop yields in China under long-term fertilization and different ecological conditions. Chin J Appl Ecol (应用生态学报), 2010, 21 (5): 1264–1269 (in Chinese with English abstract)[5]Liu M, Li Z P, Zhang T L, Jiang C Y, Chen Y P. Discrepancy in response of rice yield and soil fertility to long-term chemical fertilization and organic amendments in paddy soils cultivated from infertile upland in subtropical China. Agric Sci China, 2011, 10: 259–266[6]Xu M G, Li D C, Li J M, Qin D Z, Kazuyuki Y, Hosen Y,. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in Hunan of southern China. Agric Sci China, 2008, 7: 1245–1252[7]Shen P, Li D C, Gao J S, Xu M G, Wang B R, Hou X J. Effects of long-term application of sulfur-containing and chloride-containing chemical fertilizers on rice yield and its components. Agric Sci China, 2011, 10: 747–753[8]Ladha J K, Dawe D, Pathak H, Padre A T, Yadav R L, Singh B, Singh Y, Singh Y, Singh P, Kundu A L, Sakal R, Ram N, Regmi A P, Gami S K, Bhandari A L, Amin R, Yadav C R, Bhattarai E M, Das S, Aggarwal H P, Gupta R K, Hobbs P R. How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crops Res, 2003, 81: 159–180[9]Bi L D, Zhang B, Liu G R, Li Z Z, Liu Y R, Ye C, Yu X C, Lai T, Zhang J G, Yin J M, Liang Y. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric Ecosyst Environ, 2009, 129: 534–541[10]Yuan Y H, Fan H B, Huang Q R, Cao Q. Influence of long-term fertilization on photosynthesis, part of protective enzyme activities in leaves and the yield of rice. J Anhui Agric Univ, 2011, 38: 299–304[11]Xu M G, Zhang H M, Shi X J, Li Z Z, Huang Q H, Wang X J. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Nutr Cycl Agroecosyst, 2010, 88: 341–349[12]Zhang B, Bi L D, Liu G R, Li Z Z, Liu Y R, Ye C, Yu X C, Lai T, Zhang J G, Yin J M, Liang Y. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric Ecosys Environ, 2009, 129: 534–541[13]FageriaN K, Dos Santos A B, Moraes M F. Influence of urea and ammonium sulfate on soil acidity indices in lowland rice production. Commun Soil Sci Plant Anal, 2010, 41: 1565–1575[14]Zhao B Q, Li X Y, Li X P, Shi X J, Huang S M, Wang B R, Zhu P, Yang X Y, Liu H, Chen Y, Poulton P, Powlson D, Todd A, Payne R. Long-term fertilizer experiment network in China: crop yields and soil nutrient trends. Agron J, 2010, 102: 216–230[15]Bado B, Aw A, Ndiaye M. Long-term effect of continuous cropping of irrigated rice on soil and yield trends in the Sahel of West Africa. Nutr Cycl Agroecosyst, 2010, 88: 133–141[16]Zou J W, Shang Q Y, Yang X X, Gao C M, Wu P P, Liu J J, Xu Y C, Shen Q R, Guo S W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Global Change Biol, 2011, 17: 2196–2210[17]Xie Y-X(谢迎新), Zhang S-L(张淑利), Zhao X(赵旭), Xiong Z-Q(熊正琴), Xing G-X(邢光熹). Seasonal variation patterns of NH4+-N/NO3-N ratio and δ15NH4+ value in rainwater in Yangtze River Delta. Chin J Appl Ecol (应用生态学报), 2008, 19(9): 2035–2041 (in Chinese with English abstract)[18]Bado B V, De Vries M E, Haefele S M, Marco M C S, Ndiaye M K. Critical limit of extractable phosphorous in a gleysol for rice production in the Senegal River Valley of West Africa. Commun Soil Sci Plant Anal, 2008, 39: 202–206[19]Zhang S-X(张仕祥), Li H-X(李辉信), Hu F(胡锋), Huang F-Q(黄发泉), Huang H-X(黄花香). Residual effect of phosphorus fertilizer applied to early-rice on yield composition of late-rice. Acta Pedol Sin (土壤学报), 2006, 43(4): 611–616 (in Chinese with English abstract)[20]Bado B V, Lompo F, Sedogo M P, Cescas M P. Establishment of the critical limit of soil-available phosphorous for maize production in low acidic ultisols of West Africa. Commun Soil Sci Plant Anal, 2010, 41: 968–976[21]Tang X, Shi X, Ma Y B, Hao X. Phosphorus efficiency in a long-term wheat-rice cropping system in China. J Agric Sci, 2011, 149: 297–304[22]Lu Y-H(鲁艳红), Zeng Q-L(曾庆利), Liao Y-L(廖育林), Gong C-H(龚春华), Tian C(田昌), Luo Z-Z(罗尊长). Effects of long-term fertilizer structure on early rice yield, nutrient uptake and soil fertility under double rice-rapeseed rotation system. J Agric Sci Technol (中国农业科技导报), 2011, 13(2): 76–81 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|