欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 935-942.doi: 10.3724/SP.J.1006.2013.00935

• 研究简报 • 上一篇    下一篇

玉米低植酸自交系的鉴定及其连锁分子标记的初步筛选

高庆华1,孟义江1,张萃1,贾盟1,刘钊1,侯明明1,金德敏2,李雪姣1,牛东东1,缪刘杨1,郭乐群2,窦世娟1,刘丽娟1,李莉云1,翟文学2,刘国振1,*   

  1. 1 河北农业大学生命科学学院,河北保定071000;2 中国科学院遗传与发育生物学研究所,北京100101
  • 收稿日期:2012-10-22 修回日期:2013-01-15 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 刘国振, E-mail: gzhliu@genomics.org.cn, Tel: 0312-7528250
  • 基金资助:

    本研究由河北省自然科学基金项目(C2012204083)资助。

Identification of Low Phytic acid Maize Germplasm and Primary Screening of Its Molecular Markers

GAO Qing-Hua1,MENG Yi-Jiang1,ZHANG Cui1,JIA Meng1,LIU Zhao1,HOU Ming-Ming1,JIN De-Min2,LI Xue-Jiao1,NIU Dong-Dong1,MIAO Liu-Yang1,GUO Le-Qun2,DOU Shi-Juan1,LIU Li-Juan1,LI Li-Yun1,ZHAI Wen-Xue2,LIU Guo-Zhen1,*   

  1. 1 College of Life Sciences, Agricultural University of Hebei, Baoding 071000, China;2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2012-10-22 Revised:2013-01-15 Published:2013-05-12 Published online:2013-02-19
  • Contact: 刘国振, E-mail: gzhliu@genomics.org.cn, Tel: 0312-7528250

摘要:

降低玉米植酸含量对于改善玉米营养品质具有重要的意义,挖掘低植酸玉米种质,培育低植酸品种是一种有效降低植酸的途径。在前期工作中,我们筛选获得并初步鉴定了1个低植酸的玉米自交系齐319。本研究进一步鉴定了该自交系的植酸含量,发现它仅为常规玉米自交系的1/4左右,田间发现,其发芽率略低,但发芽后的植株生长正常,进而利用齐319Lpa241杂交获得F2群体,分析表明F2群体的植酸含量呈现分离, 符合31比例, 确定该性状受隐性单基因控制,在此基础上,初步筛选了与低植酸性状连锁的分子标记,发现第2染色体长臂上的2个标记(IDP7818IDP7635)与低植酸性状连锁。这一工作为分子标记辅助的玉米低植酸育种奠定了基础。

关键词: 玉米, 低植酸, 标记辅助的选择育种, 分子标记, F2分离群体

Abstract:

Reducing the content of phytic acid (PA, myo-inositol-1,2,3,4,5,6-hexakis phosphate) is important for improving the nutritional value of maize (Zea mays L.). The identification and application of low phytic acid (lpa) maize germplasm is an economical and effective approach in breeding program. In our previous study, Qi319 was identified as a low phytic acid inbred line. In this study, we found that the content of phytic acid phosphorus in Qi319 kernels is about one fourth of normal maize inbred lines based on quantitative analysis. The characterization of agronomic traits revealed that the germination rate of Qi319 was 75.5%, lower than that of normal inbred lines, however, Qi319 plants grew normally in the field. F2 population was generated by crossing between Qi319 and Lpa241, segregation was found for the content of phytic acid among F2 populations. The segregation ratio of 3:1 confirmed that the lpa trait was determined by a single recessive gene. We then identified two molecular markers (IDP7818 and IDP7635) located on the long arm of chromosome 2 that were co-segregated with low phytic acid loci. This result provides a fundamental basis for marker-assisted maize lpa selection process.

Key words: Maize, Low phytic acid, Marker-assisted selection breeding, Molecular marker, F2 population

[1]Oatway L, Vasanthan T, Helm J H. Phytic acid. Food Rev Int, 2001, 17: 419–431



[2]Lott J N A, Ockenden I, Raboy V, Batten G D. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res, 2000, 10: 11–33



[3]Reddy N R, Pierson M D, Sathe S K, Salunlche D K. Phytates in Cereals and Legumes. Florida: CRC Press, 1989



[4]O'Dell B L, De Boland A R, Koirtyohann S R. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem, 1972, 20: 718–723



[5]Paik I K. Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production. Asian Austral J Anim Sci, 2001, 14: 384–394



[6]Correll D L. The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual, 1998, 27: 261–266



[7]Hart M R, Quin B F, Nguyen M L. Phosphorus runoff from agricultural land and direct fertilizer effects. J Environ Qual, 2004, 33: 1954–1972



[8]Reddy K R, Kadlec R H, Flaig E, Gale P M. Phosphorus retention in streams and wetlands: a review. Crit Rev Env Sci Tec, 1999, 29: 83–146



[9]Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol, 2000, 250: 133–167



[10]Lopez H W, Leenhardt F, Coudray C, Remesy C. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Tech, 2002, 37: 727–739



[11]Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski M C, Shi J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Res, 2008, 17: 633–643



[12]Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T, Murthy P P, Sheridan W F, Ertl D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol, 2000, 124: 355–368



[13]Pilu R, Panzeri D, Gavazzi G, Rasmussen S K, Consonni G, Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet, 2003, 107: 980–987



[14]Guttieri M, Bowen D, Dorsch J A, Raboy V, Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci, 2004, 44: 418–424



[15]Larson S R, Rutger J N, Young K A, Raboy V. Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci, 2000, 40: 1397–1405



[16]Wilcox J R, Premachandra G S, Young K A, Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci, 2000, 40: 1601–1605



[17]Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 2007, 25: 930–937



[18]Cerino Badone F, Amelotti M, Cassani E, Pilu R. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize. J Hered, 2012, 103: 598–605



[19]Shi J, Wang H, Hazebroek J, Ertl D S, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J, 2005, 42: 708–719



[20]Bregitzer P, Raboy V. Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci, 2006, 46: 1318–1322



[21]Oltmans S E, Fehr W R, Welke G A, Raboy V, Peterson K L. Agronomic and seed traits of soybean lines with low–phytate phosphorus. Crop Sci, 2005, 45: 593–598



[22]Pilu R, Panzeri D, Cassani E, Cerino Badone F, Landoni M, Nielsen E. A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity, 2009, 102: 236–245



[23]Shukla S, VanToai T T, Pratt R C. Expression and nucleotide sequence of an INS (3) P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.). J Agric Food Chem, 2004, 52: 4565–4570



[24]Shi J, Wang H, Wu Y, Hazebroek J, Meeley R B, Ertl D S. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol, 2003, 131: 507–515



[25]Israel D W, Kwanyuen P, Burton J W. Genetic variability for phytic acid phosphorus and inorgaic phosphorus in seeds of soybeans in maturity groups V, VI, and VII. Crop Sci, 2006, 46: 67–71



[26]Xu X H, Zhao H J, Liu Q L, Frank T, Engel K H, An G, Shu Q Y. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet, 2009, 119: 75–83



[27]Feng X, T. Yoshida K. Molecular approaches for producing low-phytic-acid grains in rice. Plant Biotechnol, 2004, 21: 183–189



[28]Kuwano M, Mimura T, Takaiwa F, Yoshida K T. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J, 2009, 7: 96–105



[29]Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida K. Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed, 2006, 18: 263–272



[30]Kuwano M, Takaiwa F, Yoshida K T. Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles. Plant Cell Physiol, 2009, 50: 1387–1392



[31]Kim S I, Andaya C B, Newman J W, Goyal S S, Tai T H. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet, 2008, 117: 1291–1301



[32]Andaya C B, Tai T H. Fine mapping of the rice low phytic acid (Lpa1) locus. Theor Appl Genet, 2005, 111: 489–495



[33]Kim S I, Andaya C B, Goyal S S, Tai T H. The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet, 2008, 117: 769–779



[34]Wang X-Y(王雪艳), Wang Z-H(王忠华), Mei S-F(梅淑芳), Hong J(洪隽), Shu Q-Y(舒庆尧), Wu D-X(吴殿星). Brief report on screening maize mutants with high inorganic phosphorus and low phytic acid content. Acta Agric Nucl Sin (核农学报), 2006, 20(1): 404–408 (in Chinese with English abstract)



[35]Wang H(王晖), Chen J-T(陈景堂), Liu L-J(刘丽娟), Chen H(陈浩), Liu G-Z(刘国振). Identification of maize low phytic acid inbred lines and primary study of its genetic mechanism. Acta Agron Sin (作物学报), 2008, 34(1): 95–99 (in Chinese with English abstract)



[36]Ma L(马磊), Li P(李盼), Chen Z(陈哲), Zhao Y-F(赵永锋), Zhu L-Y(祝丽英), Huang Y-Q(黄亚群), Chen J-T(陈景堂). Genetic analysis and identification of maize (Zea mays L.) low phytic acid inbred lines. Sci Agric Sin (中国农业科学), 2011, 44(3): 447–455 (in Chinese with English abstract)



[37]Pilu R, Landoni M, Cassani E, Doria E, Nielsen E. The maize mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci, 2005, 45: 2096–2105



[38]Raboy V. Low-phytic-acid grains. Food Nutr Bull, 2000, 21: 423–427



[39]Dorsch J A, Cook A, Young K A, Anderson J M, Bauman A T, Volkmann C J, Murthy P P, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 2003, 62: 691–706



[40]Chen P S, Toribara T Y, Warner H. Microdetermination of phosphorus. Anal Chem, 1956, 28: 1756–1758



[41]Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: version II. Plant Mol Biol Rep, 1983, 1: 19–21



[42]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174



[43]Strother S. Homeostasis in germinating seeds. Ann Bot, 1980, 45: 217–218



[44]Ye J-C(叶金才). Practices and thoughts on breeding of good maize inbreds and high heterosis hybrids using exogenous germplasm. Shandong Agric Sci (山东农业科学), 2000, (3): 11–13 (in Chinese with English abstract)



[45]Meng Z-D(孟昭东), Guo Q-F(郭庆法), Wang L-M(汪黎明), Liu Z-X(刘治先), Zhang F-J(张发军), Ding Z-H(丁照华), Han J(韩静), Zhang Q-W(张庆伟). Strategies used in the breeding process of high-yield maize hybrid Ludan 981. J Maize Sci (玉米科学), 2003, 11(3): 54–56 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!