欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 928-934.doi: 10.3724/SP.J.1006.2013.00928

• 研究简报 • 上一篇    下一篇

球等鞭金藻Δ5去饱和酶基因IgD5在拟南芥中的功能鉴定

刘江**,孙全喜**,李新征,亓宝秀   

  1. 作物生物学国家重点实验室 / 山东农业大学生命科学学院, 山东泰安 271018
  • 收稿日期:2012-09-07 修回日期:2013-01-15 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 亓宝秀, E-mail: qbx126@sdau.edu.cn, Tel: 0538-8246205; 李新征, E-mail: lxz@sdau.edu.cn, Tel: 0538-8246205
  • 基金资助:

    本研究由国家自然科学基金项目(30970222)和国家转基因生物新品种培育重大专项(2009ZX08005-024B)资助。

Functional Characterization of Isochrysis galbana Δ5 Desaturase Gene IgD5 in Arabidopsis thaliana

LIU Jiang**,SUN Quan-Xi**,LI Xin-Zheng*,QI Bao-Xiu*   

  1. State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-09-07 Revised:2013-01-15 Published:2013-05-12 Published online:2013-02-19
  • Contact: 亓宝秀, E-mail: qbx126@sdau.edu.cn, Tel: 0538-8246205; 李新征, E-mail: lxz@sdau.edu.cn, Tel: 0538-8246205

摘要:

从球等鞭金藻中克隆到一个Δ5去饱和酶基因, 命名为IgD5。系统发育树分析表明, 该基因编码产物与来源于巴夫藻Pavlova salinaΔ5去饱和酶亲缘关系最近。此前通过酿酒酵母表达系统, 证明IgD5ω6脂肪酸具有Δ5去饱和酶活性, 但并未鉴定IgD5ω3脂肪酸的催化活性。我们将IgD5转化能够内源合成二高-γ-亚麻酸(DGLA, 20:3Δ8,11,14)和二十碳四烯酸(ETA, 20:4Δ8,11,14,17)已携带2个基因的拟南芥(简称TMA2), 通过PCRRT-PCR筛选阳性植株, 提取转基因阳性植株叶片总脂肪酸, 用气相色谱分析法检测到花生四烯酸(AA, 20:4Δ5,8,11,14)和二十碳五烯酸(EPA, 20:5Δ5,8,11,14,17), 含量分别达7.44%2.07%, 转化效率分别为68%60%, 证明IgD5在转基因植物中具有Δ5去饱和酶的活性, ω3/ω6脂肪酸没有明显偏好性, 并且催化活性远高于其在酵母中的活性。在转IgD5TMA2中除了AAEPA, 没有检测到其他新脂肪酸, 表明IgD5底物专一性很强, 是一个可用于植物转基因替代生产鱼油的良好基因。

关键词: 球等鞭金藻, Δ5去饱和酶, 花生四烯酸, 二十碳五烯酸, ω3脂肪酸, 拟南芥

Abstract:

We have isolated a Δ5 desaturase gene from the alga Isochrysis galbana, namely IgD5. Phylogenetic analysis showed that it shared the highest homology with a functionally characterized Δ5 desaturase from Pavlova salina. Previously, we demonstrated that IgD5 has activity towards the omega-6 fatty acid substrate by heterologous expression of IgD5 inSaccharomyces cerevisiae. However, whether IgD5 also has activity towards the potential omega-3 fatty acid substrate has not been verified. In this study, we transformed IgD5 into a double transgenic Arabidopsis thaliana (TMA2)that can already synthesize di-homo-γ-linolenic acid (DGLA, 20:3Δ8,11,14) and eicosatetraenoic acid (ETA, 20:4Δ8,11,14,17). Triple transgenic plants were identified by PCR and RT-PCR. The total fatty acids composition of the transgenic lines was determined by gas chromatography. Novel fatty acids, arachidonic acid (AA, 20:4Δ5, 8,11,14) and eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) were detected and accounted for 7.44% and 2.07% of total fatty acids, with a conversion rate of 68% and 60%, respectively, which are much higher than those in yeast. In addition, IgD5 did not show a preference for either ω3 or ω6 substrate. Furthermore, IgD5 has strong substrate specificity as no fatty acid products were detected except for AA and EPA. These new findings further confirmed that IgD5 is an excellent gene for the production of fish oil in plants due to its high enzyme activity coupled with substrate specificity.

Key words: Δ5 desaturase, Arachidonic acid, Eicosapentaenoic acid, ω3 fatty acids, Arabidopsis thaliana

[1]Napier J A, Sayanova O. The production of very-long-chain PUFA biosynthesis in transgenic plants: towards a sustainable source of ?sh oils. Proc Nutr Soc, 2005, 64: 87–93



[2]Funk C D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294: 1871–1875



[3]Simopoulos A P. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr, 2002, 21: 495–505



[4]Uauy R, Hoffman D R, Peirano P, Birch D G, Birch E E. Essential fatty acids in visual and brain development. Lipids, 2001, 36: 885–895



[5]Heinz E. First breakthroughs in sustainable production of “oceanic fatty acids.” Eur J Lipid Sci Technol, 2006, 108: 1–3



[6]Yokoo E M, Valente J G, Grattan L, Schmidt S L, Platt I, Silbergeld E K. Low level methylmercury exposure affects neuropsychological function in adults. Environ Health: A Global Access Sci Sour, 2003, 2: 8



[7]Domergue F, Abbadi A, Heinz E. Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci, 2005, 10: 112–116



[8]Kinney A J. Metabolic engineering in plants for human health and nutrition. Curr Opin Plant Biol, 2006, 17: 130–38



[9]Hamada F, Otani M, Kim S H, Uchida H, Kajikawa M. Accumulation of γ-linolenic acid by overexpression of a liverwort Δ6 desaturase gene in transgenic rice. Plant Cell Physiol, 2006, 47(suppl-l): 195



[10]Michaelson L V, Napier J A, Lewis M, Grif?ths G, Lazarus C M, Stobart A K. Functional identi?cation of a fatty acid Δ5 desaturase gene from Caenorhabditis elegans. FEBS Lett, 1998, 439: 215–218



[11]Kaewsuwan S, Cahoon E B, Perroud P F, Wiwat C, Panvisavas N, Quatrano R S. Identification and functional characterization of the moss Physcomitrella patens delta5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J Biol Chem, 2006, 281: 21988–21997



[12]Michaelson L V, Lazarus C M, Grif?ths G, Napier J A, Stobart A K. Isolation of a Δ5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem, 1998, 273: 19055–19059



[13]Qi B X, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Stobart A K, Lazarus M C. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol, 2004, 22: 739–745



[14]Kinney A J, Cahoon E B, Damude H G, Hitz W D, Kolar C W, Liu Z B. Production of very long chain polyunsaturated fatty acids in oilseed plants. WO 2004/071467 A2, 2004.



[15]Sun Q-X(孙全喜), Li X-Y(李雪滢), Zheng D-S(郑德松), Liu J(刘江), Li X-Z(李新征), Qi B-X(亓宝秀). Isolation and functional analysis of a Δ5 desaturase from Isochrysis galbana. Acta Hyd Sin (水生生物学报), 2012, 36(3): 412–419 (in Chinese with English abstract)



[16]Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem , 2008, 283: 22352–22362



[17]Petrie J R, Shrestha P, Mansour M P, Nichols P D, Liu Q, Singh S P. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Met Eng, 2010, 12: 233–240



[18]Petrie J R, Liu Q, Mackenzie A M, Shrestha P, Mansour M P, Robert S S, Frampton D F, Blackburn S I, Nichols P D, Singh S P. Isolation and characterisation of a high-ef?ciency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar Biotechnol, 2010 12: 233–240



[19]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16: 735–743



[20]Zhou X R, Robert S S, Petrie J R, Frampton D M F, Mansour M P, Blackburn S I, Nichols P D, Green A G, Singh S P. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry, 2007, 68: 785–96



[21]Qiu X, Hong H, Mackenzie S L. Identification of a delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem, 2001, 276: 31561–31566



[22]Venegas-Calerón M, Sayanova O, Napier J A. An alternative to ?sh oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res, 2010, 49: 108–119



[23]Qi B, Beaudoin F, FraseR T, Stobart A K, Napier J A, Lazarus C M. Identification of a cDNA encoding a novel C18-delta(9) polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett, 2002, 510: 159–165



[24]Pereira S L, Leonard A E, Huang Y S, Chuang L T, Mukerji P. Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J, 2004, 384(Pt 2): 357–366



[25]Tonon T, Sayanova O, Michaelson L V, Qing R, Harvey D, Larson T R, Li Y, Napier J A, Graham I A. Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J, 2005, 272: 3401–3412



[26]Sayanova O, Beaudoin F, Michaelson V L, Shewry R P, Napier J A. Identi?cation of Primula fatty acid Δ6-desaturases with n-3 substrate preference. FEBS Lett, 2003, 542: 100–104



[27]Zheng X Z, Ding Z K, Xu Y Q, Monroig O, Morais S, Tocher D R. Physiological roles of fatty acyl desaturases and elongases in marine ?sh: Characterisation of cDNA of fatty acyl Δ6 desaturase and elovl5 elongase of cobia (Rachycentron canadum). Aquaculture, 2009, 290: 122–131



[28]Tripodi K E J, Buttigliero L V, Altabe S G, Uttaro A D. Functional characterization of front-end desaturases from trypanosomatids depicts the ?rst polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J, 2006, 273: 271–280



[29]Dormergue F, Lercgl J, Zahringer U, Heinz E. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem, 2002, 269, 4105–4113



[30]Cho H P, Nakamura M, Clarke S D. Cloning, expression, and fatty acid regulation of the human Δ5 desaturase. J Biol Chem, 1999, 274: 37335–37339



[31]Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem, 2008, 283: 22352–22362



[32]Kajikawa M, Yamato K T, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, Sakai Y, Fukuzawa H, Ohyama K. Isolation and characterization of Δ6-desaturase, an ELO-like enzyme and Δ5-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol, 2004, 54: 335–352



[33]Iskandarov U, Goldberg J L, Cohen Z. Identi?cation and Characterization of Δ12, Δ6, and Δ5 Desaturases from the Green Microalga Parietochloris incisa. Lipids, 2010, 45: 519–530



[34]Hornung E, Korfei M, Pernstich C, Struss A, Kindl H, Fulda M, Feussner I. Specific formation of arachidonic acid and eicosapentaenoic acid by a front-end Δ5-desaturase from Phytophthora megasperma. Biochim Biophys Acta, 2005, 1686: 181–189



[35]Hong H, Datla N, MacKenzie S L, Qiu X. Isolation and characterization of a delta5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops. Lipids, 2002, 37: 863–868



[36]Watts J L, Browse J. Isolation and characterization of a delta 5-fatty acid desaturase from Caenorhabditis elegans. Arch Biochem Biophys, 1999, 362: 175–182

[1] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[2] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[3] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[4] 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808.
[5] 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478.
[6] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[7] 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716.
[8] 赵青平,赵翔,慕世超,肖慧丽,张骁. 拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定[J]. 作物学报, 2015, 41(04): 585-592.
[9] 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573.
[10] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[11] 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822.
[12] 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351.
[13] 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569.
[14] 习雨琳,周朋,宋梅芳,李志勇,孟凡华,杨建平. 拟南芥RBCS-1A基因受光调节表达模式及其启动子遗传转化应用评价[J]. 作物学报, 2012, 38(09): 1561-1569.
[15] 尹明智, 官梅, 肖钢, 李栒, 官春云. DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化[J]. 作物学报, 2011, 37(07): 1196-1204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!