欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (04): 719-730.doi: 10.3724/SP.J.1006.2014.00719

• 耕作栽培·生理生化 • 上一篇    下一篇

机械化种植对杂交籼稻F优498产量构成与株型特征的影响

雷小龙1,刘利1,刘波1,黄光忠2,郭翔3,马荣朝1,*,任万军1,*   

  1. 1四川农业大学 / 农业部西南作物生理生态与耕作重点实验室, 四川温江 611130; 2成都市郫县农村发展局, 四川郫县 611730; 3四川省农业气象中心, 四川成都 610066
  • 收稿日期:2013-11-07 修回日期:2014-01-12 出版日期:2014-04-12 网络出版日期:2014-02-14
  • 通讯作者: 马荣朝, E-mail: marongcao@163.com; 任万军, E-mail: rwjun@126.com
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2011BAD16B05, 2013BAD07B13-2)和国家公益性行业(农业)科研专项(201303102)资助。

Effects of Mechanized Planting Methods on Yield Components and Plant Type Characteristics of Indica Hybrid Rice Fyou 498

LEI Xiao-Long1,LIU Li1,LIU Bo1,HUANG Guang-Zhong2,GUO Xiang3,MA Rong-Chao1,*,REN Wan-Jun1,*   

  1. 1 Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Wenjiang 611130, China; 2 Pixian Bureau of Rural Development, Pixian 611730, China; 3 Agrometeorological Center of Sichuan Meteorological Bureau, Chengdu 610066, China
  • Received:2013-11-07 Revised:2014-01-12 Published:2014-04-12 Published online:2014-02-14
  • Contact: 马荣朝, E-mail: marongcao@163.com; 任万军, E-mail: rwjun@126.com

摘要:

为探明机械化种植杂交籼稻高产群体的株型特征, F498为材料, 采用二因素裂区设计, 研究了不同穴苗数与播期下机直播、机插、手插3种种植方式的株型特征及其与产量构成的关系。结果表明: (1) 不同种植方式株型特征差异显著, 机直播和机插上三叶叶长、叶宽和叶间距大, 但叶基角和披垂度也较大; 手插上三叶大小适宜, 叶片厚而挺直; 机直播和机插株高和着生高度显著大于手插, 但手插比叶重、单株穗数和总叶片数显著高于机械化种植; 机直播的茎蘖夹角、穗粒数和单穗重显著低于机插和手插。推迟播期和低苗处理均使叶片增大, 比叶重、粒叶比、单株穗数、穗粒数和结实率随播期延迟显著降低。单穗重与上三叶长度、宽度、着生高度和株高均呈显著或极显著正相关, 以机插最高, 手插次之, 机直播最低。(2) 机直播产量显著低于机插和手插, 且随播期延迟和穴苗数减少显著降低。产量及其构成与株型特征密切相关, 机械化种植杂交籼稻高产株型的显著特征为适宜的株高、上三叶长度、群体LAI和茎集散度; 叶宽、比叶重、叶间距大和直立性好。足穗和大穗的统一是实现水稻高产的关键, 塑造个体优良的株型与优化群体结构是增产的前提, 机械化种植杂交籼稻应在时间允许的条件下尽早播栽, 穴苗数以3苗左右为宜

关键词: 杂交籼稻, 机械化种植, 株型, 产量, 穗部性状

Abstract:

In order to identify plant type characteristics of high-yield population of indica hybrid rice using mechanized planting methods, a split plot field experiment was conducted using Fyou 498 as material. The plant type characteristics and their relationships with yield components in treatments of mechanized direct-seeding, mechanized transplanting and artificial transplanting with different seedlings per hill and different sowing dates were studied. The main results were as follows: (1) The traits of plant type differed markedly among the treatments of three planting methods. The length, width and leaf distance of top three leaves as well as blade tangent and drooping angle were larger under mechanized direct-seeding and transplanting. The top three leaves were erect with proper leaf area in the treatment of artificial transplanting. Plant height and leaf size of top three leaves were significantly larger in the treatments of mechanized direct-seeding and transplanting than in that of artificial transplanting. However, specific leaf weight, panicles per plant and total leaves were greater under artificial transplanting than under mechanized planting. For culm angle, spikelets and grain weight per panicle, the ranking orders of treatments were mechanized transplanting > artificial transplanting > mechanized direct-seeding. Leaf area increased with delaying sowing date or decreasing seedling number per hill and late sowing reduced the ratio of grain number to leaf area, panicles per plant, spikelets per panicle and seed-setting rate markedly. A significantly positive correlation was observed between grain weight per panicle and length, width, inserted height of leaf and plant height. Grain weight per plant was lower under mechanized direct-seeding than under mechanized transplanting and artificial transplanting. (2) The yield was significantly lower under mechanized direct-seeding than under mechanized transplanting and under artificial transplanting, which decreased by delaying sowing date or decreasing seedling number per hill. There were significant correlations between some traits of plant type and yield as well as its components. The notable characteristics of high-yield plant type in mechanized planting were proper plant height, length of top three leaves, LAI and culm angle. Meanwhile, the larger leaf width, specific leaf weight, leaf distance of top three leaves, erect leaves, adequate panicle number and large panicles were critical to high yield. Good plant type characteristics of individuality and optimal population structure are a prerequisite for increasing yield. Indica hybrid rice should be sowed earlier as the time allows with three seedlings per hill approximately in mechanized planting.

Key words: Indica hybrid rice, Mechanized planting methods, Plant type, Yield, Panicle traits

[1]凌启鸿. 作物群体质量. 上海: 上海科技出版社, 2000. pp 42–210



Ling Q H. Quality of Crop Population. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp 42–210 (in Chinese)



[2]Brown L R. Who will Feed China? Wake-up Call for a Small Planet. New York: Norton & Company, 1995. pp 145–146



[3]Horie T, Shiraiwa T, Homma K, Katsura K, Maeda S, Yoshida H. Can yields of lowland rice resume the increases that they showed in the1980s? Plant Prod Sci, 2005, 8: 259–274



[4]Li G H, Xue L H, Gu W, Yang C D, Wang S H, Ling Q H, Qin X, Ding Y F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Res, 2009, 112: 214–221



[5]凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1−11



Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L. Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993, 26(6): 1−11 (in Chinese with English abstract)



[6]Lü C G, Hu N, Yao K M, Xia S J, Qi Q M. Plant type and its effects on canopy structure at heading stage in various ecological areas for two-line hybrid rice combination, Liangyoupeijiu. Rice Sci, 2010, 17: 235−242



[7]Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385−403



[8]杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种的理论和方法. 中国水稻科学, 1996, 10: 115−120



Yang S R, Zhang L B, Chen W F, Xu Z J, Wang J M. Theories and methods of rice breeding for maximum yield. Chin J Rice Sci, 1996, 10: 115−120 (in Chinese with English abstract)



[9]袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1–6



Yuan L P. Hybrid rice breeding for super high yield. Hybrid Rice, 1997, 12(6): 1–6 (in Chinese and English abstract)



[10]马均, 马文波, 明东风, 杨世民, 朱庆森. 重穗型水稻株型特征研究. 中国农业科学, 2006, 39: 679−685



Ma J, Ma W B, Ming D F, Yang S M, Zhu Q S. Studies on the characteristics of rice plant with heavy panicle. Sci Agric Sin, 2006, 39: 679−685 (in Chinese with English abstract)



[11]吴崇友, 金诚谦, 卢晏, 涂安富. 我国水稻种植机械发展问题探讨. 农业工程学报, 2000, 16(2): 21–23



Wu C Y, Jin C Q, Lu Y, Tu A F. Discussion of developing rice planting machine in China. Trans CSAE, 2000, 16(2): 21–23 (in Chinese with English abstract)



[12]张文毅, 袁钊和, 吴崇友, 金梅. 水稻种植机械化进程分析研究—水稻种植机械化由快速向高速发展的进程. 中国农机化, 2011, (1): 19–22



Zhang W Y, Yuan Z H, Wu C Y, Jin M. Research on the process of rice planting mechanization-process of rice planting mechanization developing fastly to rapidly. Chin Agric Mech, 2011, (1): 19–22 (in Chinese with English abstract)



[13]郑家国, 杨文钰, 池忠志, 任万军, 姜心禄, 樊高琼, 陈兴福. 四川盆地稻田周年高产高效种植模式. 四川农业科技, 2010, (5): 20−21



Zheng J G, Yang W Y, Chi Z Z, Ren W J, Jiang X L, Fan G Q, Chen X F. Annual high-yield, high-efficiency paddy cropping patterns of Sichuan basin. Sichuan Agric Sci & Technol, 2010, (5): 20−21 ( in Chinese)



[14]李景蕻, 李刚华, 张应贵, 罗启荣, 杨从党, 王绍华, 刘正辉, 王强盛, 丁艳锋. 精确定量栽培对高海拔寒冷生态区水稻株型及产量的影响. 中国农业科学, 2009, 42: 3067−3077



Li J H, Li G H, Zhang Y G, Luo Q R, Yang C D, Wang S H, Liu Z H, Wang Q S, Ding Y F. Effects of precise and quantitative cultivation on plant type and yield of rice in high altitude and cold ecological area. Sci Agric Sin, 2009, 42: 3067−3077 (in Chinese with English abstract)



[15]沈福成, 刘传秀. 水稻株型改良的理论与实践. 贵阳: 贵州科学技术出版社, 1990. pp 116–136



Shen F C, Liu C X. Theory and Practice Modified the Plant Type of Rice. Guiyang: Guizhou Scientific & Technical Press, 1990. pp 116−136 (in Chinese)



[16]凌启鸿, 张洪程, 苏祖芳, 凌励. 稻作新理论——水稻叶龄模式. 北京: 科学出版社, 1994. p 186



Ling Q H, Zhang H C, Su Z F, Ling L. New Theory of Rice Cultural—The Leaf-age Model of Rice. Beijing: Science Press, 1994. p 186 (in Chinese)



[17]石利娟, 邓启云, 刘国华, 庄文, 陈立云. 水稻理想株型育种研究进展. 杂交水稻, 2006, 21(4): 1−6



Shi L J, Deng Q Y, Liu G H, Zhuang W, Chen L Y. Progress in ideal plant type breeding in rice. Hybrid Rice, 2006, 21(4): 1−6 (in Chinese with English abstract)



[18]陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 辽宁: 辽宁科学技术出版社, 1995. p 146



Chen W F, Xu Z J, Zhang L B. Physiological Basis for Breeding of Super-High-Yield Rice. Liaoning: Liaoning Science and Technical Publishers, 1995. p 146 (in Chinese)



[19]李红宇, 侯昱铭, 陈英华, 权成哲, 闫平, 刘梦红, 武洪涛, 陈温福, 徐正进. 东北地区水稻主要株型性状比较分析. 作物学报, 2009, 35: 921−929



Li H Y, Hou Y M, Chen Y H, Quan C Z, Yan P, Liu M H, Wu H T, Chen W F, Xu Z J. Comparison of rice plant types in northeast region of China. Acta Agron Sin, 2009, 35: 921−929 (in Chinese with English abstract)



[20]张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. 作物学报, 2012, 38: 86−98



Zhang H C, Ma Q, Yang X, Li M, Ge M J, Li G Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Liu Y Y. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin, 2012, 38: 86−98 (in Chinese with English abstract)



[21]陈温福, 徐正进, 张龙步, 杨守仁. 不同株型粳稻品种的冠层特征和物质生产关系的研究. 中国水稻科学, 1991, 5: 67−71



Chen W F, Xu Z J, Zhang L B, Yang S R. Studies on canopy properties and its relation to dry matter production in japonica rice varieties with different plant types. Chin J Rice Sci, 1991, 5: 67−71 (in Chinese with English abstract)



[22]徐正进, 陈温福, 张文忠, 刘丽霞, 周淑清, 张龙步. 水稻的产量潜力与株型演变. 沈阳农业大学学报, 2000, 31: 534–536



Xu Z J, Chen W F, Zhang W Z, Liu L X, Zhou S Q, Zhang L B, Yang S R. The yield potentiality of rice and its development of plant type. J Shenyang Agric Univ, 2000, 31: 534–536 (in Chinese with English abstract)



[23]龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147−2158



Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147−2158 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!