作物学报 ›› 2014, Vol. 40 ›› Issue (06): 965-972.doi: 10.3724/SP.J.1006.2014.00965
赵会彦,肖麓,赵志,杜德志*
ZHAO Hui-Yan,XIAO Lu,ZHAO Zhi,DU De-Zhi*
摘要:
利用青海大黄油菜和褐籽白菜型油菜09A-126构建BC4和F2分离群体, 结合AFLP与群体分离分析法(bulked segregant analysis, BSA)筛选引物, 获得5个与黄籽基因Brsc1紧密连锁的分子标记Y11~Y15。5个AFLP特异片段的序列, 均与白菜型油菜的A9染色体部分序列表现同源。将5个AFLP标记成功转化为5个SCAR标记(SC11~SC15)。利用目标基因所在染色体区段序列筛选到7个与目标基因紧密连锁的SSR标记(BrID10607、KS10760、B089L03-3和A1~A4)。利用SCAR和SSR标记扫描F2群体中部分单株, 发现SC14和A1为共显性标记。用BC4群体将Brsc1定位在标记Y06和A4之间1.7 Mb的区间内, 遗传距离分别为0.115 cM和0.98 cM。标记Y05和Y12与Brsc1共分离。本研究为黄籽油菜分子标记辅助选择育种体系的建立及目标基因的进一步精细定位和图位克隆奠定了基础。
[1]刘后利. 油菜遗传育种学, 北京: 中国农业大学出版社, 2000. pp 215–225Liu H L. Rapeseed Genetics and Breeding. Beijing: Chinese Agricultural University Press, 2000. pp 215–225 (in Chinese)[2]Stringam G R, McGregor D I, Pawlowski S H. Chemical and morphological characteristics associated with seed coat color in rapeseed. In: Proceedings of the 4th International Rapeseed Congress, Giessen, Germany. 1974: 99–108[3]Shirzadegan M, Röbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm, 1985, 87: 235–237[4]Simbaya J, Slominski B A, Rakow G, Campbell L D, Downey R K, Bell J M. Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrate, and dietary fiber components. J Agric Food Chem, 1995, 43: 2062–2066[5]Mohammad A, Irka S M, Aziz M A. Inheritance of seed color in some Brassica oleiferous. Ind J Genet Breed, 1942, 2: 112–127[6]Jönsson R. Yellow-seeded rape and turnip rape: II. Breeding for improved quality of oil and meal in yellow-seeded materials. J Swed Seed Assoc, 1975, 85: 271–275[7]Stringam G R. Inheritance of Seed Color in Turnip Rape. Can J Plant Sci, 1980, 60: 331–335[8]Zaman M W. Inheritance of seed colour in Brassica campestris. Plant Genet Breed, 1989, 99: 205–207[9]Rahman M H. Inheritance of petal colour and its independent segregation from seed colour in Brassica rapa. Plant Breed, 2001, 120: 197–200 [10]Ahmed S U, Zuberi M I. Inheritance of seed coat color in Brassica campestris L. variety Toria. Crop Sci, 1971, 11: 309–310[11]Hawk J A. Single gene control of seed color and hypocotyl color in turnip rape. Can J Plant Sci, 1982, 62: 331–334[12]Chen B Y, Heneen W K. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica, 1992, 59: 157–163[13]Schwetka A. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet, 1982, 62: 161–169[14]Teutonico R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet, 1994, 89: 885–894[15]Chen B Y, Jørgensen R B, Cheng B F, Heneen W K. Identification and chromosomal assignment of RAPD markers linked with a gene for seed colour in a Brassica Campestris-Alboglabra addition line. Hereditas, 1997, 126: 133–138[16]Rahman M, McVetty P B E, Li G. Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet, 2007, 115: 1101–1107[17]罗玉秀, 杜德志. 青海大黄油菜主要农艺性状研究. 西北农业学报, 2007, 16: 136–139Luo Y X, Du D Z. Research on desirable traits of Qinghai Dahuang(Brassica rapa L.). J Northwest Agric, 2007, 16: 136–139 (in Chinese with English abstract)[18]Xiao L, Zhao Z, Du D Z, Yao Y M, Xu L, Tang G Y. Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (Brassica rapa landrace). Theor Appl Genet, 2012, 124: 903–909[19]Doyle J J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15[20]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[21]Vos P, Hogers R, Bleeker M, van De Lee T, Hornes M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407–4414[22] 陆光远. 甘蓝型油菜显性核不育基因和抑制基因的图谱定位. 华中农业大学博士论文, 2003. pp 38–39Lu G Y. Mapping of Dominant Genic Male Sterility Gene (Ms) and Inhibitor Gene (Rf) in Brassica napus L. PhD Disseratation of Huazhong Agricultural University, 2003. pp 38–39 (in Chinese with English abstract)[23]易斌. 甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆. 华中农业大学博士论文, 2007. pp 38–39Yi B. Fine mapping and map-based cloning of recessive genic male sterility gene in Barssica napus. PhD Disseratation of Huazhong Agricultural University, 2007. pp 33–34 (in Chinese with English abstract)[24]Cheng F, Liu S, Wu J, Fang L, Sun S L, Liu B, Li P X, Hua W, Wang X W. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol, 2011, 11: 136[25]Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft L, Cheng F, Huang S W, Li X X, Hua W, Wang J Y, Wang X Y, Freeling M, Pires C J, Paterson A, Boulos C, Wang B. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035–1039[26]Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389–3402[27]李霞. 人工合成甘蓝型黄籽油菜粒色基因的精细定位. 华中农业大学硕士学位论文, 2009. p 21Li X. Fine mapping of seed color gene in the resynthesized yellow-seed Barssica napus. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2009. p 21 (in Chinese with English abstract)[28]Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K D. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009, 118: 1121–1131[29]Kosambi D D. The estimation of map distances from recombination values. Ann Human Genet, 1943: 172–175[30]Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge: Whitehead Institute Technical Report, 1992[31]刘仁虎, 孟金陵. MapDraw在Excel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317–321Liu R H, Meng J L. MapDraw: the macros for drawing genetic linkage map in Excel. Genetics(Beijing), 2003, 25: 317–321 (in Chinese with English abstract)[32]Li X, Chen L, Hong M Y, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D. A Large Insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PloS One, 2012, 7: e44145[33]Kebede B, Cheema K, Greenshields D L, Li C X, Selvaraj G, Rahman H. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome, 2012, 55: 813–823[34]Shirley B W, Kubasek W L, Storz G, Bruggemann E, Koornneef M, Ausubel F M, Goodman H M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J, 1995, 8: 659–671[35]Sagasser M, Lu G H, Hahlbrock K, Weisshaar B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes & Dev, 2002, 16: 138–149[36]刘忠松, 王卓, 刘显军, 谭勇俊, 陆赢, 官春云. 油菜A9染色体的标记、基因和结构变异. 中国科技论文在线, http://www.paper.edu.cn/index.php/default/releasepaper/content/201203-55. 2012Liu Z S, Wang Z, Liu X J, Tan Y J, Lu Y, Guan C Y. DNA Markers, Arabidopsis Orthologous Genes and Structural Variation on A9 chromosome of rapa. Sciencepaper Online, http://www.paper.edu.cn/index.php/default/releasepaper/content/201203-55. 2012 (in Chinese with English abstract)[37]Zhang J F, Lu Y, Yuan Y X, Zhang X W, Geng J F, Chen Y, Cloutier S, Peter B E M, Li G Y. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009, 69: 553–563[38]Chai Y R, Lei B, Huang H L, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen Li. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109–123[39]Yan M L, Liu X J, Guan C Y, Liu L L, Lu Y, Liu Z S. Cloning and SNP Analysis of TT1 Gene in Brassica juncea. Acta Agron Sin, 2010, 36: 1634–1641[40]Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514–152 |
[1] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[5] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[6] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[7] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[8] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[9] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[10] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[11] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[12] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
[13] | 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184. |
[14] | 王艳花, 荐红举, 邱晓, 李加纳. 白菜型油菜粒色主效基因BrTT1的调控机制分析[J]. 作物学报, 2020, 46(11): 1678-1689. |
[15] | 曾新颖,郭建斌,赵姣姣,陈伟刚,邱西克,黄莉,罗怀勇,周晓静,姜慧芳,黄家权. 花生籽仁大小相关性状QTL定位[J]. 作物学报, 2019, 45(8): 1200-1207. |
|