[1]Yoshimoto K. Beginning to understand autophagy: an intracellular self-degradation system in plants. Plant Cell Physiol, 2012, 53: 1355–1365
[2]Liu Y, Bassham D C. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol, 2012, 63: 215–237
[3]Majeski A E, Dice J F. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol, 2004, 36: 2435–2444
[4]Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993, 333: 169–174
[5]Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf D H. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett, 1994, 349: 275–280
[6]Kim S H, Kwon C, Lee J H, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells, 2012, 34: 413–423
[7]王燕, 刘玉乐. 植物细胞自噬研究进展. 中国细胞生物学学报, 2010, 32: 677–689
Wang Y, Liu Y L. Progress in plant autophagy. Chin J Cell Biol, 2010, 32: 677–689 (in Chinese with English abstract)
[8]Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2001, 2: 211–216
[9]Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George M D, Klionsky D J, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature, 1998, 395: 395–398
[10]Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 2007, 282: 37298–37302
[11]Chung T, Phillips A R, Vierstra R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant J, 2010, 62: 483–493
[12]Phillips A R, Suttangkakul A, Vierstra R D. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 2008, 178: 1339–1353
[13]Lenz H D, Haller E, Melzer E, Gust A A, Nürnberger T. Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy, 2011, 7: 773–774
[14]Lenz H D, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham D C, Vierstra R D, Parker J E, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn R A, Gust A A, Nürnberger T. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J, 2011, 66: 818–830
[15]Shin J H, Yoshimoto K, Ohsumi Y, Jeon J S, An G. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells, 2009, 27: 67–74
[16]Seay M, Patel S, Dinesh-Kumar S P. Autophagy and plant innate immunity. Cell Microbiol, 2006, 8: 899–906
[17]Hayward A P, Tsao J, Dinesh-Kumar S P. Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol, 2009, 20: 1041–1047
[18]Wang Y, Nishimura M T, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J, 2011, 68: 74–87
[19]Scott A, Wyatt S, Tsou P L, Robertson D, Allen N S. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques, 1999, 26: 1125–1132
[20]Gietz R D, Schiestl R H. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 35–37
[21]Fujiki Y, Yoshimoto K, Ohsumi Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol, 2007, 143: 1132–1139
[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408
[23]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710
[24]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90
[25]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J; International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95
[26]Kaiser S E, Qiu Y, Coats J E, Mao K, Klionsky D J, Schulman B A. Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy, 2013, 9: 778–780
[27]Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 2002, 129: 1181–1193
[28]Ketelaar T, Voss C, Dimmock S A, Thumm M, Hussey P J. Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett, 2004, 567: 302–306
[29]Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S P. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121: 567–577
[30]Mansilla Pareja M E, Colombo M I. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Front Cell Infect Microbiol, 2013, 3: 54
[31]Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis D I, Petersen N H, Mattsson O, Jørgensen L B, Jones J D, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell, 2009, 137: 773–783
[32]章珍, 刘新红, 翟洪翠, 王华忠. 小麦Pm21 基因调控的白粉菌早期侵染抑制和寄主细胞反应. 作物学报, 2011, 37: 67–73
Zhang Z, Liu X H, Zhai H C, Wang H Z. Primary infection suppression of Blumeria graminis f. sp. tritici and host cell responses regulated by Pm21 gene in wheat. Acta Agron Sin, 2011, 37: 67-73 (in Chinese with English abstract)
[33]曹学仁, 周益林, 段霞瑜, 宋玉立, 何文兰, 丁克坚, 王保通, 夏先春. 我国主要麦区101个小麦品种(系)的抗白粉病基因推导. 麦类作物学报, 2010, 30: 948–953
Cao X R, Zhou Y L, Duan X Y, Song Y L, He W L, Ding K J, Wang B T, Xia X C. Postulation of wheat powdery mildew resistance genes in 101 wheat cultivars (lines) from major wheat regions in china. J Triticeae Crops, 2010, 30: 948–953 (in Chinese with English abstract)
[34]Thomma B P, Penninckx I A, Broekaert W F, Cammue B P. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol, 2001, 13: 63–68
[35]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227
[36]Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci, 2009, 14: 310–317
[37]Chen Y J, Perera V, Christiansen M W, Holme I B, Gregersen P L, Grant M R, Collinge D B, Lyngkjær M F. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol Biol, 2013, 83: 577–590
[38]Wawrzynska A, Christiansen K M, Lan Y, Rodibaugh N L, Innes R W. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol, 2008, 148: 1510–1522
[39]Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 2009, 21: 2914–2927 |