作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1557-1564.doi: 10.3724/SP.J.1006.2014.01557
刘金栋1,陈新民1,何中虎1,2,伍玲3,白斌4,李在峰5,夏先春1,*
LIU Jin-Dong1,CHEN Xin-Min1,HE Zhong-Hu1,2,WU Ling3,BAI Bin4,LI Zai-Feng5,XIA Xian-Chun1,*
摘要:
聚合兼抗白粉病、条锈病和叶锈病的慢病性基因,是培育持久多抗小麦品种的重要措施。百农64和鲁麦21均为慢白粉病品种,分别含有4个和3个慢白粉病抗性QTL。将百农64与鲁麦21杂交,获得21个聚合2~5个慢白粉病抗性QTL的F6株系,于2012—2013年度分别在四川郫县和甘肃天水进行条锈病田间抗性鉴定,在河北保定和河南周口进行叶锈病田间抗性鉴定。分析21个株系条锈和叶锈病的最大严重度和病程曲线下面积,检测单个QTL和QTL聚合体对条锈病和叶锈病的抗性效应。结果表明,QPm.caas-4DL、QPm.caas-6BS和QPm.caas-2BL对条锈病均有显著的抗性,分别解释表型变异的16.9%、14.1%和17.3%;QPm.caas-4DL对叶锈病也有显著抗性,可解释表型变异的35.3%;QPm.caas-1A/QPm.caas-4DL/ QPm.caas-2DL/QPm.caas-2BS/QPm.caas-2BL和QPm.caas-1A/QPm.caas-4DL/QPm.caas-2BS/QPm.caas-2BL聚合体对条锈病和叶锈病的抗性显著高于两亲本,它们均含有来自百农64的QPm.caas-4DL以及来自鲁麦21的QPm.caas-2BL和QPm.caas-2BS,表明这些QTL具有明显的兼抗性效应。在小麦抗病育种中,聚合慢病性QTL越多,慢病性越强,聚合4~5个慢病性QTL时,株系可达到高抗甚至接近免疫的水平,是选育持久抗性小麦品种的重要手段。
[1]Wellings C R, Mcintosh R A, Hussain M. A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum). Plant Breed, 1988, 100: 288–296[2]Komer J A. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol, 1996, 34: 435–455[3]Conner R L, Kuzyk A D, Su H. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci, 2003, 83: 725–728[4]Singh R P, Huerta-Espino J, William H M. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For, 2005, 29: 121–127[5]Roberts J, Caldwell R M. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in Knox wheat. Mol Gen Genet, 1970, 60: 1310[6]Gustafson G D, Shaner G. Influence of plant age on the expression of slow-mildewing resistance in wheat (Triticum aestivum). Phytopathology, 1982, 72: 746–749[7]Singh R P, Huerta-Espino J, Bhavani S, Herrera-Foessel S A, Singh D, Singh P K, Velu G, Mason R E, Jin Y, Njau P, Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 2011, 179: 175–186[8]Lu Y M, Lan C X, Liang S S, Zhou X C, Liu D, Zhou G, Lu Q L, Jing J X, Wang M N, Xia X C, He Z H. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349–1359[9]Lan C X, Liang S S, Zhou X C, Zhou G, Lu Q L, Xia X C, He Z H. Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology, 2010, 100: 313–318.[10]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, Mcfadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363[11]Bhavani S, Singh R P, Argillier O, Huerta-Espino J, Singh S, Njau P, Brun S, Lacam S, Desmouceaux N. Mapping Durable Adult Plant Stripe Rust Resistance to the Race Ug99 Group in Six CIMMYT Wheats. BGRI 2011 Technical Workshop, St. Paul, Minnesota, 2011. pp 44–53[12]Singh R P, Huerta-Espino J, Rajaram S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hung, 2000, 35: 133–139[13]Castro A J, Chen X M, Hayes P M, Johnston M. Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci, 2003, 43: 651–659[14]Marasas C N, Smale M, Singh R P. The impact of agricultural maintenance research: the case of leaf rust resistance breeding in CIMMYT-related spring bread wheat. In: CD-ROM Proceeding Internal Congress on Impacts of Agricultural Research and Development. San Jose, Costa Rica, 2002[15]Singh R P, William H M, Huerta-Espino J, Rosewarne G. Wheat rust in Asia: meeting the challenges with old and new technologies. In: New Directions for a Diverse Planet. Proceedings of the 4th International Crop Science Congress. Brisbane, Australia, 2004, p 26[16]Dekkers J C M, Hospital F. The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet, 2003, 3: 22–32[17]Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E. Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet, 2006, 112: 562–569[18]Lu Q X, Szabo-Hever A, Åsmund B, Lillemo M, Semagn K, Mesterhazy A, JiF, Shi J R, Skinnes H. Two major resistance quantitative trait loci are required to counteract the increased susceptibility to Fusarium head blight of the Rht-D1b dwarfing gene in wheat. Crop Sci, 2011, 51: 2430–2438[19]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seeding and adult-plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457–463[20]任妍. 普通小麦抗条锈病基因分子定位. 中国农业科学院博士学位论文, 北京, 2012. pp 56–63Ren Y. Molecular Mapping of Stripe Rust Resistance Genes in Common Wheat. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012. pp 56-63 (in Chinese with English abstract)[21]Lan C X, Liang S S, Wang Z L, Yan J, Zhang Y, Xia X C, He Z H. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 2009, 99: 1121–1126[22]Lan C X, Ni X W, Yan J, Zhang Y, Xia X C, Chen X M, He Z H. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed, 2010, 25: 615–622[23]Bai B, He Z H, Asad M A, Lan C X, Zhang Y, Xia X C, Yan J, Chen X M, Wang C S. Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop Pasture Sci, 2011, 63: 606–611[24]Lin F, Chen X M. Quantitative trait loci for non-race-speci?c, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet, 2009, 118: 631–642[25]Ren Y, Li Z F, He Z H, Wu L, Bai B, Lan C X, Wang C F, Zhou G, Zhu H Z, Xia X C. QTL mapping of adult-plant resistance to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012, 125: 1253–1262[26]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155–1166[26]Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 1992, 82: 835–838[28]Dyck P L, Kerber E R, Aung T. An interchromosomal reciprocal translocation in wheat involving leaf rust resistance gene Lr34. Genome, 1994, 37: 556–559[29]Herrera-Foessel S A, Lagudah E S, Huerta-Espino J, Hayden M, Bariana H S, Singh R P. New slow-rusting leaf rust and stripe rust resistance gene Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011, 122: 239–249[30]何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展和展望. 中国农业科学, 2011, 44: 2193–2215He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011, 44: 2193–2215 (in Chinese with English abstract)[31]Marasas C N, Smale M, Singh R P. The economic impact of productivity maintenance research: breeding for leaf rust resistance in modern wheat. Agric Eco, 2003, 29: 253–263[32]Chen X M, Line R F. Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology, 1995, 85: 567–572[33]Bariana H S, Kailasapillai S, Brown G N, Sharp P J. Marker assisted identification of Sr2 in the National Cereal Rust Control Program in Australia, In: Slinkard A E ed. Proc 9th Intl Wheat Genet Symp. Vol. 5. University of Saskatchewan, Saskatoon, SK, Canada: Univ. Extension Press, 1998. pp 83−91[34]Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98: 903–912 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[4] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[5] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[6] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[7] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[8] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[9] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[10] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[11] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[12] | 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347. |
[13] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
[14] | 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890. |
[15] | 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387. |
|