欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1629-1638.doi: 10.3724/SP.J.1006.2014.01629

• 耕作栽培·生理生化 • 上一篇    下一篇

减量施氮对玉米-大豆套作系统中作物产量的影响

刘小明1,雍太文1,*,苏本营1,刘文钰1,周丽1,宋春1,2,杨峰1,王小春1,杨文钰1   

  1. 1 四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室, 四川成都 611130;2 四川农业大学资源环境学院生态环境研究所, 四川成都 611130
  • 收稿日期:2014-03-08 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-10
  • 通讯作者: 雍太文, E-mail: yongtaiwen@sicau.edu.cn; 杨文钰, E-mail: wenyu.yang@263.net
  • 基金资助:

    本研究由国家自然科学基金项目(31271669, 31201169), 国家现代农业产业技术体系建设专项(CARS-04-PS19)和国家公益性行业(农业)科研专项经费项目(201203096)资助。

Effect of Reduced N Application on Crop Yield in Maize-Soybean Intercropping System

LIU Xiao-Ming1,YONG Tai-Wen1,*,SU Ben-Ying1,LIU Wen-Yu1,ZHOU Li1,SONG Chun1,2,YANG Feng1,WANG Xiao-Chun1,YANG Wen-Yu1   

  1. 1 Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest, Ministry of Agriculture / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; 2 Institute of Ecological and Environmental Sciences, College of Resources and Environment, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2014-03-08 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-10
  • Contact: 雍太文, E-mail: yongtaiwen@sicau.edu.cn; 杨文钰, E-mail: wenyu.yang@263.net

摘要:

通过田间试验,研究了种植模式(玉米单作、大豆单作、玉米-大豆套作)和施氮水平(0、180、240 N kg hm–2)对作物产量和大豆光合特性、干物质积累的影响。结果表明,大豆叶片PnGsCiTr和植株干物质积累量随生育时期的推移呈先增加后降低的趋势。与单作相比,套作处理大豆的PnGsTr在V5期(玉米大豆共生期)显著降低,但在R2、R4、R6期(玉米收获后)无显著差异,地下部、地上部及总干物质积累量在各生育时期呈降低趋势,R4~R6期的作物生长率和经济系数则显著提高。玉米-大豆套作体系下,施氮显著提高了大豆花后叶片PnGsTr和植株地下部、地上部及总干物质积累量,增加了大豆单株荚数和产量,与习惯施氮(240 N kg hm–2)相比,减量施氮处理(180 N kg hm–2)大豆的Pn在R4、R6期提高了3.57%、11.82%,总干物质积累量在R6、R8期提高了5.06%、10.21%,单株荚数、产量提高了8.30%、10.15%。减量施氮处理下,玉米-大豆套作系统的总产量最高,总经济系数为0.49,LER达2.17。玉米-大豆套作减量一体化施肥有利于提高大豆光合特性和干物质积累,提高大豆产量和玉米-大豆套作系统总产。

关键词: 减量施氮, 光合特性, 干物质积累, 产量, 大豆, 玉米-大豆套作

Abstract:

Maize-soybean strip relay intercropping pattern is widely adopted in Southeast China. Whereas the traditional fertilized measures used by farmers are not good for high yield of soybean. In order to get high yield for both maize and soybean in this system, a field experiment was conducted to investigate the effect of reduced N application on photosynthetic characteristics and dry matter accumulation of soybean, and the system crop yield. The experiment included three planting patterns (maize monocropping, soybean monocropping and maize-soybean relay strip intercropping) and three rates of N fertilizer application (0, 180, 240 kg ha–1). The results demonstrated that, the net photosynthetic rate (Pn), transpiration rate (Gs), stomatal conductance (Ci), photosynthetic capacity (Tr), dry matter accumulation of soybean increased initially and then decreased in the later stage. Compared with soybean monocropping, the Pn, Gs, and Tr of intercropped soybean decreased significantly in the intergrowth stage (V5), but had no significant differences at R2, R4, and R6 stages. Although the below-ground, above-ground and total dry matter accumulation of soybean significantly decreased during the whole growth period, the crop growth rate from R4 to R6 stages and economic coefficient significantly increased. In the maize-soybean relay strip intercropping system, N application significantly enhanced the Pn, Gs, Tr, dry matter accumulation, pod number per plant, and grain yield of soybean. Compared with the conventional N application (240 N kg ha–1), Pn of soybean under the reduced amount of N application (180 N kg ha–1) increased by 3.57% and 11.82% at R4 and R6 stages, respectively. Furthermore, the total dry matter accumulation increased by 5.06% and 10.21% at R6 and R8 stages, and pod number per plant and grain yield increased by 8.30% and 10.15%, respectively. Finally, the maize-soybean relay strip intercropping system possessed the highest yield under the N application rate of 180 N kg·ha–1, with the economic coefficient and land equivalent ratio (LER) of 0.49 and 2.17, respectively. Taken together, the reduced N application in maize-soybean relay strip intercropping system can increase the yield of soybean and whole the system through improving soybean photosynthetic characteristics and enhancing dry matter accumulation.

Key words: Reduced N application, Photosynthetic characteristics, Dry matter accumulation, Yield, Soybean, Maize-soybean intercropping

[1]Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P W, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008–1010



[2]Ngkee Kwong, Bholah K F. Nitrogen and phosphorus transport by surface from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. Agric Ecosyst Environ, 2002, 91: 147–157



[3]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915–924



Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915–924 (in Chinese with English abstract)



[4]邹晓锦, 张鑫, 安景文. 氮肥减量后移对玉米产量和氮素吸收利用及农田氮素平衡的影响. 中国土壤与肥料, 2011, (6): 25–29



Zhou X J, Zhang X, An J W. Effect of reducing and postponing of N application on yield, plant N uptake, utilization and N balance in maize. China Soils Fert, 2011, (6): 25–29 (in Chinese with English abstract)



[5]战秀梅, 李亭亭, 韩晓日, 邹殿博, 左仁辉, 叶冰. 不同施肥方式对春玉米产量、效益及氮素吸收和利用的影响. 植物营养与肥料学报, 2011, 17: 861–868



Zhan X M, Li T T, Han X R, Zou D B, Zuo R H, Ye B. Effects of nitrogen fertilization methods on yield, profit and nitrogen absorption and utilization of spring maize. Plant Nutr Fert Sci, 2011, 17: 861–868 (in Chinese with English abstract)



[6]Constantina J, Marya B, Laurentb F, Aubrionb G, Fontaineb A, Kerveillantc P, Beaudoina N. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ, 2010, 135: 268–278



[7]Ruan W B, Ren T, Chen Q, Zhu X, Wang J G. Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production. Appl Soil Ecol, 2013, 66: 48–55



[8]杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆,振兴大豆产业. 大豆科学, 2008, 27: 1–7



Yang W Y, Yong T W, Ren W J, Fan G Q, Mou J Y, Lu X L. Develop relay-planting soybean, revitalize soybean industry. Soybean Sci, 2008, 27: 1–7 (in Chinese with English abstract)



[9]雍太文, 杨文钰, 樊高琼, 王小春, 张亚飞. 麦/玉/豆”套作种植模式氮肥周年平衡施用初步研究. 中国土壤与肥料, 2009, (3): 31–35



Yong T W, Yang W Y, Fan G Q, Wang X C, Zhang Y F. Study on the annual balance application of nitrogen fertilizer in the relay-planting system of wheat-maize-soybean. Soil Fert Sci China, 2009, (3): 31–35 (in Chinese with English abstract)



[10]雍太文, 杨文钰, 王小春, 樊高琼. 两种三熟套作体系中的氮素吸收利用及种间相互作用. 四川农业大学学报, 2009, 27(2): 167–172



Yong T W, Yang W Y, Wang X C, Fan G Q. Nitrogen uptake and utilization and interspecies reciprocityin the two relay-planting systems. J Sichuan Agric Univ, 2009, 27(2): 167–172 (in Chinese with English abstract)



[11]雍太文, 杨文钰, 任万军, 樊高琼, 向达兵. 两种三熟套作体系中的氮素转移及吸收利用. 中国农业科学, 2009, 42: 3170–3178



Yong T W, Yang W Y, Ren W J, Fan G Q, Xiang D B. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Sci Agric Sin, 2009, 42: 3170–3178 (in Chinese with English abstract)



[12]Yang W T, Li Z X, Wang J W, Wu P, Zhang Y. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crops Res, 2013, 146: 44–50



[13]Mushagalusa G N, Ledent J F, Draye X. Shoot and root compete-tion in potato-maize intercropping: effects on growth and yield. Environ Exp Bot, 2008, 64: 180–188



[14]Makoi J H J R, Chimphango S B M, Dakora F D.Photosynthesis, water, use eficiency and tit 3C of five cowpea genotypes grown inmixed culture and at diferent densities with sorghum. Photosyn-thetica, 2010, 48: 143–155



[15]王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007, 33: 1502–1507



Wang Z, Yang W Y, Wu Q L. Effects of shading in maize/soybean relay-cropping system on the photo-synthetic characteristics and yield of soybean. Acta Agron Sin, 2007, 33: 1502–1507 (in Chinese with English abstract)



[16]Zhang L, Van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz J H J. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res, 2008, 107: 29–42



[17]Vos J, Vander-Putten P E L. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plantparts. Eur J Agron, 2001, 14: 209–220



[18]宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵. 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应. 中国油料作物学报, 2009, 31: 474–479



Song Y X, Yang W Y, Li Z X, Yu X B, Guo K, Xiang D B. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. Chin J Oil Crop Sci, 2009, 31: 474–479 (in Chinese with English abstract)



[19]谷秋荣, 薛晓娅, 郭鹏旭, 赵巧梅, 熊淑萍. 不同氮肥类型对大豆叶片光合特性及产量的影响. 大豆科学, 2010, 29: 900–905



Gu Q R, Xue X Y, Guo P X, Zhao Q M, Xiong S P. Effects of different nitrogen forms on leaves photosynthesis characteristics and yields of soybean. Soybean Sci, 2010, 29: 900–905 (in Chinese with English abstract)



[20]谢甫绨, 马兆惠, 张惠君, 敖雪, 王海英. 氮肥对不同品质基因型大豆光合生理和干物质积累的影响. 大豆科学, 2010, 29: 223–227



Xie F T, Ma Z H, Zhang H J, Ao X, Wang H Y. Effect of nitrogen fertilizer on photosynthetic physiology and dry matter accumulation of soybean with quality genotypes. Soybean Sci, 2010, 29: 223–227 (in Chinese with English abstract)



[21]雍太文, 董茜, 刘小明, 刘文钰, 宋春, 杨峰, 王小春, 杨文钰. 施肥方式对玉米-大豆套作体系氮素吸收利用效率的影响. 中国油料作物学报, 2014, 36: 084–091



Yong T W, Dong Q, Liu X M, Liu W Y, Song C, Yang F, Wang X C, Yang W Y. Effect of N application methods on N uptake and utilization efficiency in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2014, 36: 084–091 (in Chinese with English abstract)



[22]王秋杰, 寇长林, 王永岐, 王兴仁, 张福锁. 砂地小麦套作花生的产量优势及其与养分利用效率关系的研究. 作物学报, 1999, 25: 70–75



Wang Q J, Kou C L, Wang Y Q, Wang X R, Zhang F S. Studies on yield advantage of wheat and peanut relay intercropping system and its relation with nutrient utilization efficiency in sandy land. Acta Agron Sin, 1999, 25: 70–75 (in Chinese with English abstract)



[23]Haugaard-Nielsen H, Ambus Pand Jensen E S. Interspecific competition, N use and interference with weeds in pe-barley intercropping. Field Crops Res, 2001, 70: 101–109



[24]Willey R W, Osiru D S O. Studies on mixtures of maize and bean (Phaseolus vulgaris) with particular reference to plant population. J Agric Sci, 1972, 79: 517–529



[25]Oljaca S, Cvetkovic R, Kovacevic D, Vasic G, Momirovic N. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaeolus vulgaris) intercropping system. J Agric Sci, 2000, 135: 261–270



[26]Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Zdenko. wheat-maize or wheat-soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123–137



[27]Subedi K D. Wheat intercropped with tore(Brassica campestris var. toria) and pea (Pisum sativum) in the subsistence farming system of th Nepalese hills. J Agric Sci, 1997, 128: 283–289



[28]雍太文, 杨文钰, 向达兵, 陈小容, 万燕. 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定. 草业学报, 2012, 21(1): 50–58



Yong T W, Yang W Y, Xiang D B, Chen X R, Wan Y. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Pratac Sin, 2012, 21(1): 50–58 (in Chinese with English abstract)



[29]张正翼, 龚万灼, 杨文钰, 马琳. 套作模式下不同大豆品种(系)主要农艺性状与产量的关系. 大豆科学, 2007, 26: 680–686



Zhang Z Y, Gong W Z, Yang W Y, Ma L. Correlation betweenagronomic characters and yield in relay-planting soybeans. Soybean Sci, 2007, 26: 680–686 (in Chinese with English abstract)



[30]万燕, 闫艳红, 杨文钰. 不同氮肥水平下叶面喷施烯效唑对套作大豆生长和氮代谢的影响. 浙江大学学报(农业与生命科学版), 2012, 38(2): 185–196



Wan Y, Yan Y H, Yang W Y. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybean under different nitrogen levels. J Zhejiang Univ (Agric Life Sci), 2012, 38(2): 185–196 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[10] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[13] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[14] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!